Advertisement

Journal of Low Temperature Physics

, Volume 159, Issue 1–2, pp 245–248 | Cite as

Study of Nanostructured Array of Antidots Using Pulsed Magnetic Fields

  • D. C. Leitao
  • J. Ventura
  • A. M. Pereira
  • C. T. Sousa
  • J. M. Moreira
  • F. C. Carpinteiro
  • J. B. Sousa
  • M. Vazquez
  • J. P. Araujo
Article

Abstract

The absence of the superparamagnetic limit in nanostructured antidots makes them strong candidates for ultra-high density recording media. In this work, nanoporous alumina templates (NpATs), with average pore diameters ∼35 nm and separation ∼100 nm, were grown using a two-step anodization method. A Ni80Fe20 thin film of 6.5 nm was then sputtered on top of such NpATs, building an antidot network. A detailed study of the magnetoresistance (MR) (fields up to 25 T and temperatures down to 77 K) was performed. The antidot network sample revealed an anomalous MR and R(T) behaviour at T M ∼250 K arising from a spin-flip transition occurring in a thin iron oxide layer.

Antidot arrays Pulsed magnetic fields Magnetoresistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z.L. Xiao, C. Han, U. Welp, H. Wang, V. Vlasko-Vlasko, W. Kwok, D. Miller, J. Hiller, R. Cook, G. Willing, G. Crabtree, Appl. Phys. Lett. 81, 2869 (2002) CrossRefADSGoogle Scholar
  2. 2.
    D.C. Leitao, C.T. Sousa, J. Ventura, K.R. Pirota, M. Vazquez, J.B. Sousa, J.P. Araujo, J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2009.04.001
  3. 3.
    D. Navas, M. Hernandez-Velez, M. Vazquez, W. Lee, K. Nielsch, Appl. Phys. Lett. 90, 192501 (2007) CrossRefADSGoogle Scholar
  4. 4.
    D.C. Leitao, C.T. Sousa, J. Ventura, J.S. Amaral, F. Carpinteiro, K.R. Pirota, M. Vazquez, J.B. Sousa, J.P. Araujo, J. Non-Cryst. Solids 354, 5241 (2008) CrossRefADSGoogle Scholar
  5. 5.
    H. Masuda, K. Fukuda, Science 268, 1466 (1995) CrossRefADSGoogle Scholar
  6. 6.
    R. Fermento, D.C. Leitao, J.M. Teixeira, A.M. Pereira, J. Ventura, J.P. Araujo, J.B. Sousa, J. Non-Cryst. Solids 354, 5279 (2008) CrossRefADSGoogle Scholar
  7. 7.
    C.C. Wang, A.O. Adeyeye, N. Singh, Y.S. Huang, Y.H. Wu, Phys. Rev. B 72, 174426 (2005) CrossRefADSGoogle Scholar
  8. 8.
    C.C. Wang, A.O. Adeyeye, N. Singh, Nanotechnology 17, 1629 (2006) CrossRefADSGoogle Scholar
  9. 9.
    J.B. Sousa, J.O. Ventura, M.A. Salgueiro da Silva, P.P. Freitas, A. Veloso, J. Appl. Phys. 91, 5321 (2002) CrossRefADSGoogle Scholar
  10. 10.
    B. Raquet, M. Viret, E. Sondergard, O. Cespedes, R. Mamy, Phys. Rev. B 66, 024433 (2002) CrossRefADSGoogle Scholar
  11. 11.
    B.E. del Barco, M. Duran, J.M. Hernandez, J. Tejad, R.D. Zysler, M. Vasquez Mansilla, D. Fiorani, Phys. Rev. B 65, 05240 (2002) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D. C. Leitao
    • 1
  • J. Ventura
    • 1
  • A. M. Pereira
    • 1
  • C. T. Sousa
    • 1
  • J. M. Moreira
    • 1
  • F. C. Carpinteiro
    • 1
  • J. B. Sousa
    • 1
  • M. Vazquez
    • 2
  • J. P. Araujo
    • 1
  1. 1.Departamento de Fisica, Faculdade de Ciencias da Universidade do PortoIFIMUP and IN-Institute of Nanoscience and NanotechnologyPortoPortugal
  2. 2.Instituto de Ciencia de Materiales de MadridCSICMadridSpain

Personalised recommendations