Advertisement

Vortex Diffusivity and Core Diameter of 2D Superfluid in 4He Films on Gold and H2 Substrates

  • Takuya Oda
  • Mitsunori Hieda
  • Ryo Toda
  • Taku Matsushita
  • Nobuo Wada
Article

Abstract

The two-dimensional (2D) 4He fluid films show the Kosterlitz-Thouless (KT) transition where pairing and unpairing of the 2D vortices play an important role. However, the vortex properties (the diffusion constant D, the core diameter a 0) have not been precisely obtained for various conditions. Here, we accurately determined the parameter D/a 0 2 by the high frequency dependence of the superfluid onset up to 180 MHz for the submonolayer 4He fluid films adsorbed on gold and H2 (3.3 layers) preplated on gold, respectively. The superfluid onset coverage changes from 1.6 (gold) to 0.5 layers (H2), which clearly indicates the large difference of the adsorption potential. The parameter D/a 0 2 , on the other hand, has the same value for the coverages with the same KT temperature T KT. This suggests that the vortex diffusions on both substrates have the largest value D/m in the quantum limit. The core diameter a 0 was estimated to be the same magnitude as the de Broglie wavelength at T KT between 0.1 and 0.9 K.

Keywords

KT transition 4He film 

PACS

67.25.dp 67.25.D 

References

  1. 1.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6(8), 1181 (1973) CrossRefADSGoogle Scholar
  2. 2.
    P.W. Adams, W.I. Glaberson, Phys. Rev. B 35, 4633 (1987) CrossRefADSGoogle Scholar
  3. 3.
    D. Finotello, Y.Y. Yu, F.M. Gasparini, Phys. Rev. B 41, 10994 (1990) CrossRefADSGoogle Scholar
  4. 4.
    J. Maps, R.B. Hallock, Phys. Rev. B 27, 5491 (1983) CrossRefADSGoogle Scholar
  5. 5.
    H. Yano, T. Jocha, N. Wada, Phys. Rev. B 60, 543 (1999) CrossRefADSGoogle Scholar
  6. 6.
    M. Hieda, K. Matsuda, T. Kato, T. Matsushita, N. Wada, J. Phys. Soc. Jpn. 78, 033604-1 (2009) CrossRefADSGoogle Scholar
  7. 7.
    H. Cho, G.A. Williams, Phys. Rev. Lett. 75, 1562 (1995) CrossRefADSGoogle Scholar
  8. 8.
    M.J. Lee, P. Fozooni, P.W. Retz, J. Low Temp. Phys. 54, 303 (1984) CrossRefADSGoogle Scholar
  9. 9.
    L. Bruschi, A. Carlin, G. Mistura, Phys. Rev. Lett. 88, 046105 (2002) CrossRefADSGoogle Scholar
  10. 10.
    B. Borovsky, B.L. Mason, J. Krim, J. Appl. Phys. 88, 4017 (2000) CrossRefADSGoogle Scholar
  11. 11.
    G. Agnolet, D.F. McQueeney, J.D. Reppy, Phys. Rev. B 39, 8934 (1989) CrossRefADSGoogle Scholar
  12. 12.
    E. Cheng, G. Ihm, M.W. Cole, J. Low Temp. Phys. 74, 519 (1989) CrossRefADSGoogle Scholar
  13. 13.
    G. Csáthy, J.D. Reppy, M.H.W. Chan, Phys. Rev. Lett. 91, 235301 (2003) CrossRefADSGoogle Scholar
  14. 14.
    V. Ambegaokar, B.I. Halperin, D.R. Nelson, E.D. Siggia, Phys. Rev. B 21, 1806 (1980) CrossRefADSGoogle Scholar
  15. 15.
    A. Fetter, Phys. Rev. 138, A429 (1965) CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    K. Shirahama, M. Kubota, S. Ogawa, N. Wada, T. Watanabe, Phys. Rev. Lett. 64, 1541 (1990) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Takuya Oda
    • 1
  • Mitsunori Hieda
    • 1
  • Ryo Toda
    • 1
    • 2
  • Taku Matsushita
    • 1
  • Nobuo Wada
    • 1
  1. 1.Department of PhysicsNagoya UniversityNagoyaJapan
  2. 2.Research Center for Low Temperature and Materials SciencesKyoto UniversityKyotoJapan

Personalised recommendations