Superfluid Transition of a 4He Thin Film Pressurized by Bulk Liquid 3He

  • Masahiro Wasai
  • Satoshi Murakawa
  • Yuta Tamura
  • Yuichiro Wada
  • Yuki Aoki
  • Ryuji Nomura
  • Yuichi Okuda


We measured transverse acoustic impedance Z of normal fluid 3He at 46.6 MHz on a surface coated with a thin 4He film. The real component of the impedance, Z′, in the coated samples deviates from Z′ in the pure 3He in the low temperature region. Z′ on the coated samples is almost identical with Z′ in the pure sample at high temperature and gradually deviates below a particular temperature T onset . T onset  is possibly the superfluid onset temperature of the 4He film pressurized by the bulk liquid 3He. The gradual decrease in Z′ means that the superfluid component in 4He film increases gradually, which is expected from the dynamic KT transition at high frequency. The thicker is the film, the higher is the T onset . The range of T onset we observed was between 40 and 160 mK. This is much lower than that at the saturated vapor pressure. Suppression of T onset achieved by the applied pressure from bulk liquid 3He was presumably caused by the dissolved 3He in the film, thickening of the inert layers and/or by the strong correlation effect. The result shows that the specularity of 3He quasiparticle scattering is strongly affected by superfluidity of the 4He film.


4He film Superfluid Acoustic impedance Normal fluid 3He 


67.25.Dp 67.30.Eh 67.60.Gf 43.58.Bh 


  1. 1.
    D. Einzel, J.M. Parpia, J. Low Temp. Phys. 109, 1 (1997) ADSGoogle Scholar
  2. 2.
    W.P. Halperin, E. Varoquaux, Modern Problems in Condensed Matter Sciences, vol. 26 (North-Holland, Amsterdam, 1990) Google Scholar
  3. 3.
    S.M. Tholen, J.M. Parpia, Phys. Rev. Lett. 68, 2810 (1992) CrossRefADSGoogle Scholar
  4. 4.
    D.A. Ritchie, J. Saunders, D.F. Brewer, Phys. Rev. Lett. 59, 465 (1987) CrossRefADSGoogle Scholar
  5. 5.
    P.R. Roach, J.B. Ketterson, Phys. Rev. Lett. 36, 736 (1976) CrossRefADSGoogle Scholar
  6. 6.
    E.G. Flowers, R.W. Richardson, S.J. Williamson, Phys. Rev. Lett. 37, 309 (1976) CrossRefADSGoogle Scholar
  7. 7.
    E.G. Flowers, R.W. Richardson, Phys. Rev. B 17, 1238 (1978) CrossRefADSGoogle Scholar
  8. 8.
    F.P. Milliken, R.W. Richardson, S.J. Williamson, J. Low Temp. Phys. 45, 409 (1981) CrossRefADSGoogle Scholar
  9. 9.
    D. Kim, M. Nakagawa, O. Ishikawa, T. Hata, T. Kodama, H. Kojima, Phys. Rev. Lett. 71, 1581 (1993) CrossRefADSGoogle Scholar
  10. 10.
    M.R. Freeman, Ph.D. thesis, Cornell University (unpublished) (1988) Google Scholar
  11. 11.
    Y. Aoki, Y. Wada, M. Saitoh, R. Nomura, Y. Okuda, Y. Nagato, M. Yamamoto, S. Higashitani, K. Nagai, Phys. Rev. Lett. 95, 075301 (2005) CrossRefADSGoogle Scholar
  12. 12.
    Y. Aoki, Y. Wada, A. Ogino, M. Saitoh, R. Nomura, Y. Okuda, J. Low Temp. Phys. 138, 783 (2005) CrossRefADSGoogle Scholar
  13. 13.
    M. Saitoh, Y. Wada, Y. Aoki, S. Murakawa, R. Nomura, Y. Okuda, Phys. Rev. B 74, 220505 (2006) CrossRefADSGoogle Scholar
  14. 14.
    D. Einzel, P. Wölfle, P.J. Hirschfeld, J. Low Temp. Phys. 80, 31 (1990) CrossRefADSGoogle Scholar
  15. 15.
    Y. Wada, S. Murakawa, Y. Tamura, M. Saitoh, Y. Aoki, R. Nomura, Y. Okuda, Phys. Rev. B 78, 214516 (2008) CrossRefADSGoogle Scholar
  16. 16.
    D.J. Bishop, J.D. Reppy, Phys. Rev. B 22, 5171 (1980) CrossRefADSGoogle Scholar
  17. 17.
    M. Hieda, K. Matsuda, T. Kato, T. Matsushita, N. Wada, J. Phys. Soc. Jpn. 78, 033604 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Masahiro Wasai
    • 1
  • Satoshi Murakawa
    • 1
  • Yuta Tamura
    • 1
  • Yuichiro Wada
    • 1
  • Yuki Aoki
    • 1
  • Ryuji Nomura
    • 1
  • Yuichi Okuda
    • 1
  1. 1.Department of Condensed Matter PhysicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations