Advertisement

Helium Film Formed in 1.2 nm Pore in Zeolite Templated Carbon

  • Yusuke Kinosita
  • Ryo Toda
  • Taku Matsushita
  • Mitsunori Hieda
  • Nobuo Wada
  • Hirotomo Nishihara
  • Takashi Kyotani
Article

Abstract

We have measured the vapor pressure of 4He adsorbed in zeolite templated carbon (ZTC) at 4.2 K, in order to examine 4He film growth in the nanopore. ZTC has a framework made of non-stacked graphene, and has a relatively uniform 1.2 nm pore with three-dimensional (3D) periodicity of 1.4 nm. The nanoporous substrate is a candidate to realize superfluid 4He film with closer 3D connectivity than those studied so far. From the vapor pressure, coverage dependences of the thickness and the two-dimensional (2D) isothermal compressibility of 4He film were derived using thermodynamic equations. The 2D compressibility indicates the onset coverage n 1 of the second adsorption layer around 20 µmol/m2. It is confirmed that the 4He film in the 1.2 nm pores grows uniformly at least up to 1.3–1.5 n 1.

Keywords

Helium 4 Nanopore Film growth 

PACS

67.25.Bh 67.25.Dp 68.43.Fg 

References

  1. 1.
    R. Toda, M. Hieda, T. Matsushita, N. Wada, J. Taniguchi, H. Ikegami, S. Inagaki, Y. Fukushima, Phys. Rev. Lett. 99, 255301 (2007) CrossRefADSGoogle Scholar
  2. 2.
    T. Matsushita, R. Toda, M. Hieda, N. Wada, J. Low Temp. Phys. 150, 032055 (2009) Google Scholar
  3. 3.
    T. Kyotani, T. Nagai, S. Inoue, A. Tomita, Chem. Mater. 9, 609 (1997) CrossRefGoogle Scholar
  4. 4.
    H. Nishihara, Q.-H. Yang, P.-X. Hou, M. Unno, S. Yamauchi, R. Saito, J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Y. Sato, M. Terauchi, T. Kyotani, Carbon 47, 1220 (2009) CrossRefGoogle Scholar
  5. 5.
    K. Matsuoka, Y. Yamagishi, T. Yamazaki, N. Setoyama, A. Tomita, T. Kyotani, Carbon 43, 855 (2005) CrossRefGoogle Scholar
  6. 6.
    F. Pobel, Matter and Methods at Low Temperatures, 2nd edn. (Springer, Berlin, 1996), pp. 244–245 Google Scholar
  7. 7.
    G. Zimmerli, G. Mistura, M.H.W. Chan, Phys. Rev. Lett. 68, 60 (1992) CrossRefADSGoogle Scholar
  8. 8.
    H. Ikegami, T. Okuno, Y. Yamato, J. Taniguchi, N. Wada, Phys. Rev. B 68, 092501 (2003) CrossRefADSGoogle Scholar
  9. 9.
    R. Toda, J. Taniguchi, R. Asano, T. Matsushita, N. Wada, J. Low Temp. Phys. 138, 177 (2005) CrossRefADSGoogle Scholar
  10. 10.
    R. Asano, R. Toda, Y. Matsushita, M. Hieda, T. Matsushita, N. Wada, AIP Conf. Proc. 850, 299 (2006) CrossRefADSGoogle Scholar
  11. 11.
    E. Cheng, M.W. Cole, Phys. Rev. B 38, 987 (1988) CrossRefADSGoogle Scholar
  12. 12.
    D.S. Greywall, Phys. Rev. B 47, 309 (1993) CrossRefADSGoogle Scholar
  13. 13.
    P.A. Crowell, J.D. Reppy, Phys. Rev. B 53, 2701 (1996) CrossRefADSGoogle Scholar
  14. 14.
    G.A. Csáthy, J.D. Reppy, M.H.W. Chan, Phys. Rev. Lett. 91, 235301 (2003) CrossRefADSGoogle Scholar
  15. 15.
    M.C. Gordillo, J. Boronat, Phys. Rev. Lett. 102, 085303 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yusuke Kinosita
    • 1
  • Ryo Toda
    • 1
  • Taku Matsushita
    • 1
  • Mitsunori Hieda
    • 1
  • Nobuo Wada
    • 1
  • Hirotomo Nishihara
    • 2
  • Takashi Kyotani
    • 2
  1. 1.Department of Physics, Graduate School of ScienceNagoya UniversityNagoyaJapan
  2. 2.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations