Advertisement

Journal of Low Temperature Physics

, Volume 151, Issue 3–4, pp 865–870 | Cite as

Measurement of the Nuclear Recoil Thermal Relative Efficiency Factor with an Undoped Sapphire Scintillating Bolometer

  • N. Coron
  • E. García
  • J. Gironnet
  • J. Leblanc
  • P. de Marcillac
  • M. Martínez
  • Y. Ortigoza
  • C. Pobes
  • J. Puimedón
  • T. Redon
  • M. L. Sarsa
  • L. Torres
  • J. A. Villar
Article
  • 42 Downloads

Abstract

In previous work of the ROSEBUD (Rare Objects SEarch with Bolometers UndergrounD) collaboration, undoped sapphire has shown high light yield at very low temperature and low particle discrimination energy threshold which convert sapphire scintillating bolometers in very suitable detectors for dark matter searches. Measuring the nuclear recoil thermal efficiency factor relative to gamma events is required in order to correctly estimate the sensitivity for Weakly Interacting Massive Particles (WIMPs). Here we report on the results of a dedicated experiment with an external 210Po source which aims at the estimate of the relative thermal efficiency factor of nuclear recoil versus gamma events depositing the same energy in an undoped sapphire scintillating bolometer. A value slightly larger than one has been derived and its implications in the search for WIMPs are briefly outlined. We also present the results of an analysis of 236Pu calibration data obtained with the same scintillating bolometer, deriving an estimate of the relative thermal efficiency factor for nuclear recoil versus alpha events.

Keywords

WIMP search Scintillating bolometer Particle discrimination 

PACS

29.40.Mc 29.40.Wk 95.35.+d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Phys. (Conf. Series) 39 (2006) (Proceedings of TAUP2005 Conference, Zaragoza, Spain) Google Scholar
  2. 2.
    J. Amaré et al., Appl. Phys. Lett. 87, 264102 (2005) CrossRefADSGoogle Scholar
  3. 3.
    P.F. Smith et al., Phys. Lett. B 255, 454 (1991) CrossRefADSGoogle Scholar
  4. 4.
    E. Simon et al., Nucl. Instrum. Methods A 507, 643 (2003) CrossRefADSGoogle Scholar
  5. 5.
    A. Benoit et al., Nucl. Instrum. Methods A 577, 558 (2007) CrossRefGoogle Scholar
  6. 6.
    Th. Jagemann et al., Nucl. Instrum. Methods A 551, 245 (2005) CrossRefADSGoogle Scholar
  7. 7.
    Th. Jagemann et al., Nucl. Instrum. Methods A 564, 549 (2006) CrossRefADSGoogle Scholar
  8. 8.
    A. Alessandrello et al., Nucl. Instrum. Methods B 31, 462 (1988) CrossRefADSGoogle Scholar
  9. 9.
    A. Alessandrello et al., Phys. Lett. B 285, 176 (1992) CrossRefADSGoogle Scholar
  10. 10.
    H.H. Stroke et al., IEEE Trans. Nucl. Sci. 33, 759 (1986) ADSCrossRefGoogle Scholar
  11. 11.
    J.W. Zhou et al., Nucl. Instrum. Methods A 337, 95 (1993) CrossRefADSGoogle Scholar
  12. 12.
    J.W. Zhou et al., Nucl. Instrum. Methods A 349, 225 (1994) CrossRefADSGoogle Scholar
  13. 13.
    A. Alessandrello et al., Phys. Lett. B 408, 465 (1997) CrossRefADSGoogle Scholar
  14. 14.
    J. Ninković et al., Nucl. Instrum. Methods A 564, 567 (2006) CrossRefADSGoogle Scholar
  15. 15.
    M.A. Hammed et al., Nucl. Instrum. Methods A 334, 543 (1993) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • N. Coron
    • 1
  • E. García
    • 2
  • J. Gironnet
    • 1
  • J. Leblanc
    • 1
  • P. de Marcillac
    • 1
  • M. Martínez
    • 2
  • Y. Ortigoza
    • 2
  • C. Pobes
    • 2
  • J. Puimedón
    • 2
  • T. Redon
    • 1
  • M. L. Sarsa
    • 2
  • L. Torres
    • 2
  • J. A. Villar
    • 2
  1. 1.Institut d’Astrophysique SpatialeOrsay CedexFrance
  2. 2.Laboratorio de Física Nuclear y AstropartículasUniversidad de ZaragozaZaragozaSpain

Personalised recommendations