Advertisement

Journal of Low Temperature Physics

, Volume 151, Issue 3–4, pp 812–817 | Cite as

Xenon10 and Noble Liquid Dark Matter Detectors

  • S. Fiorucci
Article

Abstract

In the field of direct searches for WIMP dark matter, noble liquid detectors have recently proven an increasingly competitive technology. Although less demanding in terms of cryogenics, they are relatively easily scalable to large target masses and can offer good position reconstruction and background rejection power. Here we illustrate the more recent progress of this technology, through the particular example of the Xenon10 experiment.

Keywords

Dark Matter Xenon Noble liquids 

PACS

95.35.+d 29.40.Mc 95.55.Vj 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.S. Akerib et al., Phys. Rev. Lett. 96, 011302 (2006) CrossRefADSGoogle Scholar
  2. 2.
    V. Sanlard et al., Phys. Rev. D 71, 122002 (2005) CrossRefADSGoogle Scholar
  3. 3.
    G. Angloher et al., Astropart. Phys. 23, 325–339 (2005) CrossRefADSGoogle Scholar
  4. 4.
    N.J.T. Smith et al., in Proc. 4th Int. Workshop Identification of Dark Matter (World Scientific, Singapore, 2003), p. 302 Google Scholar
  5. 5.
    M. Yamashita et al., Astropart. Phys. 20, 79 (2003) CrossRefADSGoogle Scholar
  6. 6.
    R. Brunetti et al., New Astron. Rev. 49, 265–269 (2005) CrossRefADSGoogle Scholar
  7. 7.
    M.G. Boulay, A. Hime, Astropart. Phys. 25, 170–182 (2006) CrossRefADSGoogle Scholar
  8. 8.
    A. Rubbia, J. Phys. Conf. Ser. 39, 129–132 (2006) CrossRefADSGoogle Scholar
  9. 9.
    D.N. McKinsey, K.J. Coakley, Astropart. Phys. 22, 355–368 (2005) CrossRefADSGoogle Scholar
  10. 10.
    R.J. Gaitskell, Direct detection of dark matter. Ann. Rev. Nucl. Part. Sci. 54, 315–359 (2004) CrossRefADSGoogle Scholar
  11. 11.
    E. Aprile et al., Phys. Rev. Lett. 97, 081302 (2006) CrossRefADSGoogle Scholar
  12. 12.
    T. Shutt et al., Nucl. Phys. B Proc. Suppl. 173, 160–163 (2007) CrossRefADSGoogle Scholar
  13. 13.
    M. Yamashita et al., Nucl. Instrum. Methods A 535, 692 (2004) ADSGoogle Scholar
  14. 14.
    T. Haruyama et al., Adv. Cryog. Eng. 710, 1459 (2004) Google Scholar
  15. 15.
  16. 16.
    P. Benetti et al., Astropart. Phys. 28, 495–507 (2008) CrossRefGoogle Scholar
  17. 17.
    J. Angle et al. (XENON Collaboration), Phys. Rev. Lett. (to appear); arXiv:0706.0039v2 [astro-ph] Google Scholar
  18. 18.
    S. Yellin, Phys. Rev. D 66, 032005 (2002) CrossRefADSGoogle Scholar
  19. 19.
    J.D. Lewin, P.F. Smith, Astropart. Phys. 6, 87 (1996) CrossRefADSGoogle Scholar
  20. 20.
    D.S. Akerib et al., Phys. Rev. Lett. 96, 011302 (2006). CDMS Collaboration CrossRefADSGoogle Scholar
  21. 21.
    J. Ellis et al., Phys. Rev. D 71, 095007 (2005) CrossRefADSGoogle Scholar
  22. 22.
    L. Roszkowski, R. Ruiz de Austri, R. Trotta, arXiv:hep-ph/0705.2012 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PhysicsBrown UniversityProvidenceUSA

Personalised recommendations