Journal of Low Temperature Physics

, Volume 151, Issue 1–2, pp 76–81 | Cite as

Technique for Measuring the Conductance of Silicon-Nitride Membranes Using Johnson Noise Thermometry

  • K. Rostem
  • D. Glowacka
  • D. J. Goldie
  • S. Withington


We present a technique for measuring the thermal conductance of isolated Silicon-Nitride (Si x N y ) membranes using Johnson noise thermometry. The isolated Si x N y membranes have thin film AuCu resistors deposited on the surface with superconducting tracks. These resistors were used either as heat loads, or as thermometers by reading their Johnson noise with a low noise ( \({\sim}4\mbox{ pA/}\sqrt{\mathrm{Hz}}\) ) Superconducting Quantum Interference Device (SQUID). This technique measures, in real time, the Temperature-Power (T-P) relationship of the membrane, from which details of the thermal conductance can be extracted. We present preliminary results for two geometrically different Si x N y membranes across a temperature range of 250 mK to 1.2 K.


Johnson noise thermometry Silicon nitride Thermal conductance measurements 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.A. Lindeman, S. Bandler, R.P. Brekosky, J.A. Chervenak, E. Figueroa-Feliciano, F.M. Finkbeiner, R.L. Kelley, T. Saab, C.K. Stahle, D.J. Talley, Nucl. Instrum. Methods A 520, 411 (2004) CrossRefADSGoogle Scholar
  2. 2.
    M.J. Myers, P. Ade, K. Arnold, G. Engargiola, B. Holzapfel, A.T. Lee, R. O’Brient, P.L. Richards, A. Smith, H. Spieler et al., Nucl. Instrum. Methods A 559, 531 (2006) CrossRefADSGoogle Scholar
  3. 3.
    M.D. Audley, R.W. Barker, M. Crane, R. Dace, D. Glowacka, D.J. Goldie, A.N. Lasenby, H.M. Stevenson, V. Tsaneva, S. Withington et al., ArXiv Astrophysics e-prints (2006). astro-ph/0608285 Google Scholar
  4. 4.
    K.D. Irwin, G.C. Hilton, D.A. Wollman, J.M. Martinis, Appl. Phys. Lett. 69, 1945 (1996). URL CrossRefADSGoogle Scholar
  5. 5.
    M. Nahum, J.M. Martinis, Appl. Phys. Lett. 66, 3203 (1995). URL CrossRefADSGoogle Scholar
  6. 6.
    A. Orlando, M.P. Bruijn, H.F.C. Hoevers, P.D. Mauskopf, P.A.J. de Korte, E. Krouwer, M.L. Ridder, Nucl. Instrum. Methods A 559, 534 (2006) CrossRefADSGoogle Scholar
  7. 7.
    A.L. Woodcraft, R.V. Sudiwala, E. Wakui, R.S. Bhatia, J.J. Bock, A.D. Turner, Physica B 284–288, 1968–1969 (2000) CrossRefGoogle Scholar
  8. 8.
    H.F.C. Hoevers, M.L. Ridder, A. Germeau, M.P. Bruijn, P.A.J. de Korte, Appl. Phys. Lett. 86, 251903 (2005) CrossRefADSGoogle Scholar
  9. 9.
    M.M. Leivo, J.P. Pekola, Appl. Phys. Lett. 72, 1305 (1998) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • K. Rostem
    • 1
  • D. Glowacka
    • 1
  • D. J. Goldie
    • 1
  • S. Withington
    • 1
  1. 1.Cavendish LaboratoryCambridgeUK

Personalised recommendations