Advertisement

Journal of Low Temperature Physics

, Volume 151, Issue 1–2, pp 524–529 | Cite as

Noise and Sensitivity of Aluminum Kinetic Inductance Detectors for Sub-mm Astronomy

  • J. Baselmans
  • S. J. C. Yates
  • R. Barends
  • Y. J. Y. Lankwarden
  • J. R. Gao
  • H. Hoevers
  • T. M. Klapwijk
Article

Abstract

Kinetic inductance detectors are based upon high Q superconducting resonators. We have measured the electrical Noise Equivalent Power (NEP) of 100 nm thick 1/4λ coplanar waveguide Aluminum resonators at 100 mK using phase readout and radius readout. We find that the phase NEP is independent of the Q factor of the resonator, limited by excess noise in the KID and given by NEP \({}=9\times 10^{-18}\ \mbox{W}/\sqrt{\mathrm{Hz}}\) at 100 Hz. It increases with roughly f −0.5 at lower frequencies. The amplitude NEP is strongly Q factor dependent, limited by the setup noise, nearly frequency independent and as low as NEP \({}=3\times10^{-18}\ \mathrm{W}/\sqrt{\mathrm{Hz}}\) for a high Q resonator (Q=454.000). For lower Q resonators the amplitude NEP increases to values equal to or even larger than the phase readout.

Keywords

Sub-mm detectors Kinetic inductance 

PACS

85.25.Pb 74.40.k 74.25.Nf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Detector needs for long wavelength astrophysics, Report by the Infrared, Submillimeter, and Millimeter Detector Working Group, http://www.sofia.usra.edu/det_workshop/report/ISMDWG_final.pdf (2002)
  2. 2.
    P. Day, H. leDuc, B. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425, 817–820 (2003) CrossRefADSGoogle Scholar
  3. 3.
    B. Mazin, Microwave kinetic inductance detectors, Ph.D. Thesis, California Institute of Technology, 2004 Google Scholar
  4. 4.
    J.J.A. Baselmans, S.J.C. Yates, P. de Korte, H. Hoevers, R. Barends, J.N. Hovenier, J.R. Gao, T.M. Klapwijk, J. Adv. Space Res. 40, 708–713 (2007). doi: 10.1016/j.asr.2007.06.041 CrossRefADSGoogle Scholar
  5. 5.
    R. Barends, J.J.A. Baselmans, J.N. Hovenier, J.R. Gao, S.J.C. Yates, T.M. Klapwijk, H.F.C. Hoevers, IEEE Trans. Appl. Superconduct. 17(2), 263–266 (2007). CrossRefGoogle Scholar
  6. 6.
    B. Mazin, P.K. Day, K.D. Irwin, C.D. Reintsma, J. Zmuidzinas, Nucl. Instrum. Methods Phys. Res. A 559(2), 799–801 (2005) CrossRefADSGoogle Scholar
  7. 7.
    B.A. Mazin, B. Bumble, P.K. Day, M.E. Eckart, S. Golwala, J. Zmuidzinas, F.A. Harrison, Appl. Phys. Lett. 89, 222507 (2006) CrossRefADSGoogle Scholar
  8. 8.
    P.K. Day, H.G. Leduc, A. Goldin, T. Vayonakis, B.A. Mazin, S. Kumar, J. Gao, J. Zmuidzinas, Nucl. Instrum. Methods Phys. Res. A 559(2), 561–563 (2006) CrossRefADSGoogle Scholar
  9. 9.
    J. Gao, J. Zmuidzinas, B.A. Mazin, H.G. Leduc, P.K. Day, Appl. Phys. Lett. 90, 102507 (2007) CrossRefADSGoogle Scholar
  10. 10.
    J.M. Martinis, K.B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K.D. Osborn, K. Cicak, S. Oh, C.P. Pappas, R.W. Simmonds, C.C. Yu, Phys. Ref. Lett. 95, 210503 (2005) CrossRefADSGoogle Scholar
  11. 11.
    N. Wadefalk, S. Weinreb, in Proc. of IEEE IMS 2005 Workshop WFF, Very Large Microwave Arrays for Radio Astronomy and Space Communications (2005) Google Scholar
  12. 12.
    M.A. Biondi, M.P. Garfunkel, Phys. Rev. 116, 853–861 (1959) CrossRefADSGoogle Scholar
  13. 13.
    D.C. Mattis, J. Bardeen, Phys. Rev. 111, 412 (1958) MATHCrossRefADSGoogle Scholar
  14. 14.
    A. Porch, P. Mauskopf, S. Doyle, C. Duscombe, IEEE Trans. Appl. Superconduct. 15, 552–555 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. Baselmans
    • 1
  • S. J. C. Yates
    • 1
  • R. Barends
    • 2
  • Y. J. Y. Lankwarden
    • 1
  • J. R. Gao
    • 2
  • H. Hoevers
    • 1
  • T. M. Klapwijk
    • 2
  1. 1.SRON National Institute for Space ResearchUtrechtThe Netherlands
  2. 2.Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations