Skip to main content
Log in

Ion-Implanted Silicon X-Ray Calorimeters: Present and Future

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We now have about 25 years of experience with X-ray calorimeters based on doped semiconductor thermometers. Ion-implanted Si arrays have been used in astrophysics and laboratory atomic physics. The device properties and characteristics are sufficiently well understood to allow optimized designs for a wide variety of applications over the 0.1–100 keV range. With new absorber materials, approaches for absorber attachment and compact, low thermal conductance JFET arrays, it should be possible to advance this technology from the 36 pixel arrays of today to arrays that are about an order of magnitude larger, and with significantly improved energy resolution. These would enable new capabilities on instruments being considered now for missions that may fly in about five years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.H. Moseley, J.C. Mather, D. McCammon, J. Appl. Phys. 56, 1257 (1984)

    Article  ADS  Google Scholar 

  2. D. McCammon et al., J. Appl. Phys. 56, 1263 (1984)

    Article  ADS  Google Scholar 

  3. R.L. Kelley et al., Publ. Astron. Soc. Jpn. 59, S77 (2007)

    ADS  Google Scholar 

  4. K. Mitsuda et al., Publ. Astron. Soc. Jpn. 59, S1 (2007)

    ADS  Google Scholar 

  5. D. McCammon et al., Astrophys. J. 576, 188 (2002)

    Article  ADS  Google Scholar 

  6. C.K. Stahle et al., Proc. SPIE 4851, 1394 (2003)

    Article  Google Scholar 

  7. D. McCammon, in Cryogenic Particle Detection, ed. by C. Enss. Topics in Applied Physics, vol. 99 (Springer, Berlin, 2005)

    Google Scholar 

  8. P. Verhoeve, J. Low Temp. Phys. 151 (2008). doi:10.1007/s10909-008-9730-9

  9. K. Irwin, J. Low Temp. Phys. (2008, this volume)

  10. K. Mitsuda et al., J. Low Temp. Phys. 151 (2008). doi:10.1007/s10909-008-9737-2

  11. R.P. Brekosky et al., Nucl. Instrum. Methods A 520, 439 (2004)

    Article  ADS  Google Scholar 

  12. M. Galeazzi et al., submitted to Phys. Rev. B (2007)

  13. M. Galeazzi, D. McCammon, J. Appl. Phys. 93, 4856 (2003)

    Article  ADS  Google Scholar 

  14. F.S. Porter, R.L. Kelley, C.A. Kilbourne, Nucl. Instrum. Methods A 559, 436 (2006)

    Article  ADS  Google Scholar 

  15. F.S. Porter et al., J. Low Temp. Phys. 151 (2008). doi:10.1007/s10909-008-9788-4

  16. C. Grein, private communication (2007). Based on M.E. Flatté, C.H. Grein, H. Ehrenreich, R.H. Miles, H. Cruz, J. Appl. Phys. 78, 4552 (1995)

  17. S. Moseley et al., J. Low Temp. Phys. 151 (2008). doi:10.1007/s10909-007-9670-9

  18. L. Oh, C.A. Allen, R.L. Kelley, J. Low Temp. Phys. 151 (2008). doi:10.1007/s10909-008-9778-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Kelley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelley, R.L., Allen, C.A., Galeazzi, M. et al. Ion-Implanted Silicon X-Ray Calorimeters: Present and Future. J Low Temp Phys 151, 375–380 (2008). https://doi.org/10.1007/s10909-007-9663-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9663-8

PACS

Navigation