Advertisement

Journal of Low Temperature Physics

, Volume 151, Issue 1–2, pp 375–380 | Cite as

Ion-Implanted Silicon X-Ray Calorimeters: Present and Future

  • R. L. Kelley
  • C. A. Allen
  • M. Galeazzi
  • C. A. Kilbourne
  • D. McCammon
  • F. S. Porter
  • A. E. Szymkowiak
Article

Abstract

We now have about 25 years of experience with X-ray calorimeters based on doped semiconductor thermometers. Ion-implanted Si arrays have been used in astrophysics and laboratory atomic physics. The device properties and characteristics are sufficiently well understood to allow optimized designs for a wide variety of applications over the 0.1–100 keV range. With new absorber materials, approaches for absorber attachment and compact, low thermal conductance JFET arrays, it should be possible to advance this technology from the 36 pixel arrays of today to arrays that are about an order of magnitude larger, and with significantly improved energy resolution. These would enable new capabilities on instruments being considered now for missions that may fly in about five years.

PACS

07.85.Nc 32.30.Rj 95.55.-n 95.55.Ka 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.H. Moseley, J.C. Mather, D. McCammon, J. Appl. Phys. 56, 1257 (1984) CrossRefADSGoogle Scholar
  2. 2.
    D. McCammon et al., J. Appl. Phys. 56, 1263 (1984) CrossRefADSGoogle Scholar
  3. 3.
    R.L. Kelley et al., Publ. Astron. Soc. Jpn. 59, S77 (2007) ADSGoogle Scholar
  4. 4.
    K. Mitsuda et al., Publ. Astron. Soc. Jpn. 59, S1 (2007) ADSGoogle Scholar
  5. 5.
    D. McCammon et al., Astrophys. J. 576, 188 (2002) CrossRefADSGoogle Scholar
  6. 6.
    C.K. Stahle et al., Proc. SPIE 4851, 1394 (2003) CrossRefGoogle Scholar
  7. 7.
    D. McCammon, in Cryogenic Particle Detection, ed. by C. Enss. Topics in Applied Physics, vol. 99 (Springer, Berlin, 2005) Google Scholar
  8. 8.
    P. Verhoeve, J. Low Temp. Phys. 151 (2008). doi: 10.1007/s10909-008-9730-9
  9. 9.
    K. Irwin, J. Low Temp. Phys. (2008, this volume) Google Scholar
  10. 10.
    K. Mitsuda et al., J. Low Temp. Phys. 151 (2008). doi: 10.1007/s10909-008-9737-2
  11. 11.
    R.P. Brekosky et al., Nucl. Instrum. Methods A 520, 439 (2004) CrossRefADSGoogle Scholar
  12. 12.
    M. Galeazzi et al., submitted to Phys. Rev. B (2007) Google Scholar
  13. 13.
    M. Galeazzi, D. McCammon, J. Appl. Phys. 93, 4856 (2003) CrossRefADSGoogle Scholar
  14. 14.
    F.S. Porter, R.L. Kelley, C.A. Kilbourne, Nucl. Instrum. Methods A 559, 436 (2006) CrossRefADSGoogle Scholar
  15. 15.
    F.S. Porter et al., J. Low Temp. Phys. 151 (2008). doi: 10.1007/s10909-008-9788-4
  16. 16.
    C. Grein, private communication (2007). Based on M.E. Flatté, C.H. Grein, H. Ehrenreich, R.H. Miles, H. Cruz, J. Appl. Phys. 78, 4552 (1995) Google Scholar
  17. 17.
    S. Moseley et al., J. Low Temp. Phys. 151 (2008). doi: 10.1007/s10909-007-9670-9
  18. 18.
    L. Oh, C.A. Allen, R.L. Kelley, J. Low Temp. Phys. 151 (2008). doi: 10.1007/s10909-008-9778-6

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • R. L. Kelley
    • 1
  • C. A. Allen
    • 1
  • M. Galeazzi
    • 2
  • C. A. Kilbourne
    • 1
  • D. McCammon
    • 3
  • F. S. Porter
    • 1
  • A. E. Szymkowiak
    • 4
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Department of PhysicsUniversity of MiamiMiamiUSA
  3. 3.Physics DepartmentUniversity of WisconsinMadisonUSA
  4. 4.Department of PhysicsYale UniversityNew HavenUSA

Personalised recommendations