Advertisement

Journal of Low Temperature Physics

, Volume 151, Issue 1–2, pp 211–215 | Cite as

Detector Development for the Next Phases of the Cryogenic Dark Matter Search: Results from 1 Inch Ge and Si Detectors

  • C. N. Bailey
  • Z. Ahmed
  • D. S. Akerib
  • P. L. Brink
  • B. Cabrera
  • J. P. Castle
  • J. Cooley
  • M. E. Danowski
  • M. R. Dragowsky
  • J. Filippini
  • D. R. Grant
  • R. Hennings-Yeomans
  • N. Mirabolfathi
  • L. Novak
  • R. W. Ogburn
  • M. Pyle
  • J. Ruderman
  • B. Sadoulet
  • R. W. Schnee
  • D. N. Seitz
  • B. Serfass
  • K. M. Sundqvist
  • A. Tomada
  • B. A. Young
Article

Abstract

The Cryogenic Dark Matter Search (CDMS) experiment is searching for Weakly Interacting Massive Particles (WIMPs) using detectors with the ability to discriminate between candidate (nuclear recoil) and background (electron recoil) events by measuring both phonon and ionization signals from recoils in the detector crystals. As CDMS scales up to greater WIMP sensitivity, it is necessary to increase the detector mass and further improve background discrimination. CDMS is engaged in ongoing fabrication and development of new detector designs in order to meet these criteria for the proposed SuperCDMS experiment. Thicker detector prototypes have been produced with new photolithographic masks. These masks have greater surface coverage of the quasi particle trap and transition edge sensor system to provide superior athermal phonon collection. Results from continuing laboratory tests are presented which already indicate improvement in discrimination parameters.

Keywords

SuperCDMS Dark matter 

PACS

95.35.+d 14.80.Ly 29.40.Vj 85.25.Oj 73.61.Jc 85.25.-j 74.78.-w 85.25.Oj 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.S. Akerib et al. (CDMS Collaboration), these proceedings (presented by N. Mirabolfathi) Google Scholar
  2. 2.
    D.S. Akerib et al. (SuperCDMS Collaboration), these proceedings (presented by P.L. Brink) Google Scholar
  3. 3.
    D.S. Akerib et al. (CDMS Collaboration), Phys. Rev. D 72, 052009 (2005) CrossRefADSGoogle Scholar
  4. 4.
    R.M. Clarke, PhD thesis, Stanford University, 1999 Google Scholar
  5. 5.
    V. Mandic et al., Nucl. Instrum. Methods A 520, 171 (2004) CrossRefADSGoogle Scholar
  6. 6.
    T. Shutt et al., Nucl. Instrum. Methods A 444, 340 (2000) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • C. N. Bailey
    • 2
  • Z. Ahmed
    • 1
  • D. S. Akerib
    • 2
  • P. L. Brink
    • 5
  • B. Cabrera
    • 5
  • J. P. Castle
    • 5
  • J. Cooley
    • 5
  • M. E. Danowski
    • 2
  • M. R. Dragowsky
    • 2
  • J. Filippini
    • 6
  • D. R. Grant
    • 2
  • R. Hennings-Yeomans
    • 2
  • N. Mirabolfathi
    • 6
  • L. Novak
    • 5
  • R. W. Ogburn
    • 5
  • M. Pyle
    • 5
  • J. Ruderman
    • 5
  • B. Sadoulet
    • 3
    • 6
  • R. W. Schnee
    • 2
  • D. N. Seitz
    • 6
  • B. Serfass
    • 6
  • K. M. Sundqvist
    • 6
  • A. Tomada
    • 5
  • B. A. Young
    • 4
  1. 1.Department of PhysicsCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of PhysicsCase Western Reserve UniversityClevelandUSA
  3. 3.Lawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Department of PhysicsSanta Clara UniversitySanta ClaraUSA
  5. 5.Department of PhysicsStanford UniversityStanfordUSA
  6. 6.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations