Journal of Low Temperature Physics

, Volume 151, Issue 1–2, pp 201–205 | Cite as

Fabrication of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers with Sub-Nanosecond Response

  • Thomas E. Wilson


We provide a convenient recipe for fabricating reliable superconducting microbolometers as acoustic phonon detectors with sub-nanosecond response, using image-reversal optical lithography and dc-magnetron sputtering, and our recipe requires no chemical or plasma etching. Our approach solves the traditional problem for granular aluminium bolometers of unreliable (i.e., non-Ohmic) electrical contacts by sequentially sputtering the granular aluminium film and then a palladium capping layer. We use dc calibration data, the method of Danilchenko et al. (Acta Phys. Pol. A 103(4):325, [2003]) and direct nanosecond-pulsed photoexcitation to obtain the microbolometer’s characteristic current, thermal conductance, characteristic relaxation time, and heat capacity. We also demonstrate the use of the deconvolution algorithm of Edwards et al. (J. Phys. E Sci. Instrum. 22:582, [1989]) to obtain the phonon flux in a heat pulse experiment with nanosecond resolution.


Superconducting bolometer Granular aluminium Image-reversal optical lithography Acoustic phonon detector Sub-nanosecond response 


07.20.Mc 07.57.Kp 43.35.Lq 63.20.-e 74.25.Kc 74.45.+c 74.78.Db 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Danilchenko, C. Jaziukiewicz, T. Paszkeiwicz, S. Wolski, Acta Phys. Pol. A 103(4), 325 (2003) ADSGoogle Scholar
  2. 2.
    S.C. Edwards, H.B. Rani, J.K. Wigmore, J. Phys. E Sci. Instrum. 22, 582 (1989) CrossRefADSGoogle Scholar
  3. 3.
    J.P. Wolfe, Imaging Phonons: Acoustic Wave Propagation in Solids (Cambridge University Press, New York, 1998) Google Scholar
  4. 4.
    K.D. Irwin, G.C. Hilton, D.A. Wollman, J.M. Martinis, J. Appl. Phys. 83(8), 3978 (1998) CrossRefADSGoogle Scholar
  5. 5.
    B.H. Rani, S.C. Edwards, J.K. Wigmore, R.A. Collins, J. Phys. C Solid State Phys. 21, L701 (1988) CrossRefADSGoogle Scholar
  6. 6.
    J.A. Shields, M.E. Msall, M.S. Carroll, J.P. Wolfe, Phys. Rev. B 47(19), 12510 (1993) CrossRefADSGoogle Scholar
  7. 7.
    G. Sanna, M. Nardi, L. Martinis, Rev. Sci. Instrum. 61(5), 1379 (1990) CrossRefADSGoogle Scholar
  8. 8.
    H. Kraus, Supercond. Sci. Technol. 9, 827 (1996) CrossRefADSGoogle Scholar
  9. 9.
    M. Giltrow, M.J. Blylett, N.S. Lawson, A. Hammiche, O.J. Griffiths, J.K. Wignmore, V. Efimov, Meas. Sci. Technol. 14, N69 (2003) CrossRefGoogle Scholar
  10. 10.
    D.F. Santavicca, M.O. Reese, A.B. True, C.A. Schmuttenmaer, D.E. Prober, IEEE Trans. Appl. Supercond. 17(2), 412 (2007) CrossRefGoogle Scholar
  11. 11.
    D.L. Meier, J.X. Przybysz, J. Kang, IEEE Trans. Magn. 27(2), 3121–3124 (1991) CrossRefADSGoogle Scholar
  12. 12.
    N. Fuson, J. Appl. Phys. 20, 59 (1943) CrossRefADSGoogle Scholar
  13. 13.
    R.C. Dynes, J.P. Garno, Phys. Rev. Lett. 46(2), 137 (1980) CrossRefADSGoogle Scholar
  14. 14.
    G. Brammertz, A.A. Golubov, P. Verhoeve, R. den Hartog, A. Peacock, H. Rogalla, App. Phys. Lett. 80(16), 2955 (2002) CrossRefADSGoogle Scholar
  15. 15.
    E.T. Swartz, R.O. Pohl, Appl. Phys. Lett. 51, 2200 (1987) CrossRefADSGoogle Scholar
  16. 16.
    R.L. Filler, P. Lindenfeld, T. Worthington, Phys. Rev. B 21, 5031 (1979) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PhysicsMarshall UniversityHuntingtonUSA

Personalised recommendations