Advertisement

Journal of Low Temperature Physics

, Volume 150, Issue 3–4, pp 420–425 | Cite as

Convective Turbulence in Superfluid Solutions 3He–4He

  • G. Sheshin
  • V. Chagovets
  • T. Kalko
  • E. Rudavskii
  • A. Zadorozhko
Article
  • 32 Downloads

Abstract

In present work, we continue our experimental investigations of heat instability in superfluid 3He–4He solutions heated from below. We research two solutions with 3He concentrations 5.0% and 9.5% for temperature of 270 mK. It is found that for 5% solution the dependence \(\nabla T(\dot{Q})\) is linear in temperature range studied whereas for the solution of 9.5% we observed the deviation from linear dependence above some critical value  \(\dot{Q}_{c}\) . This effect manifests the thermal instability which appears under start of phase separation in 9.5% solution if heat flow is switched on. For 5.0% solution where one does not observe the phase separation at the values of  \(\dot{Q}\)  applied, the instability was not observed. To identify the possible mechanism of a thermal instability in stratified solution, we estimated the dependence of the Nusselt number on relative Raileigh number Ra/Ra c . One observes that the dependence can be fitted as Nu=(Ra/Ra c ) b where b=0.31±0.04. Note that the dependence obtained agrees rather good with the empiric expression of (Busse in Rep. Prog. Phys. 41:1929, 1978) and connecting the numbers Nu and Ra for turbulent convection. This gives grounds to conclude the heat transfer in a stratified solution is realized by transition to the regime of turbulent convection.

Keywords

Superfluid mixtures Convection Turbulence Phase 

PACS

67.60.-g 67.55.Hc 68.05.-n 68.60.Dv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.H. Busse, Rep. Prog. Phys. 41, 1929 (1978) CrossRefADSGoogle Scholar
  2. 2.
    W.F. Vinen, Proc. R. Soc. Lond. Ser. A 240, 114 (1957) ADSCrossRefGoogle Scholar
  3. 3.
    W.F. Vinen, Proc. R. Soc. Lond. Ser. A 240, 128 (1957) ADSGoogle Scholar
  4. 4.
    W.F. Vinen, Proc. R. Soc. Lond. Ser. A 242, 493 (1957) ADSGoogle Scholar
  5. 5.
    Y. Maeno, H. Haucke, R.E. Ecke, J.C. Wheatley, J. Low Temp. Phys. 59, 305 (1985) CrossRefADSGoogle Scholar
  6. 6.
    T.S. Sullivan, V. Steinberg, R.E. Ecke, J. Low Temp. Phys. 90, 343 (1993) CrossRefADSGoogle Scholar
  7. 7.
    R.F. Mudde, H. van Beelen, Physica B 162, 197 (1990) CrossRefADSGoogle Scholar
  8. 8.
    R.F. Mudde, H. van Beelen, Physica B 176, 17 (1992) CrossRefADSGoogle Scholar
  9. 9.
    R.F. Mudde, H. van Beelen, Physica B 176, 69 (1992) CrossRefADSGoogle Scholar
  10. 10.
    G. Sheshin, V. Chagovets, T. Kalko, E. Rudavskii, A. Zadorozhko, J. Low Temp. Phys. 138, 301 (2005) CrossRefADSGoogle Scholar
  11. 11.
    W.R. Abel, R.T. Johnson, J.C. Wheatly, W. Zimmermann, Phys. Rev. Lett. 18, 737 (1967) CrossRefADSGoogle Scholar
  12. 12.
    W.R. Abel, J.C. Wheatly, Phys. Rev. Lett. 21, 1231 (1968) CrossRefADSGoogle Scholar
  13. 13.
    G. Sheshin, V. Chagovets, T. Kalko, E. Rudavskii, A. Zadorozhko, J. Low Temp. Phys. 146, 403 (2007) CrossRefADSGoogle Scholar
  14. 14.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, London, 1978) Google Scholar
  15. 15.
    S. Burmistrov, T. Satoh, J. Low Temp. Phys. 138, 513 (2005) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • G. Sheshin
    • 1
  • V. Chagovets
    • 1
  • T. Kalko
    • 1
  • E. Rudavskii
    • 1
  • A. Zadorozhko
    • 1
  1. 1.B. Verkin Institute for Low Temperature Physics and EngineeringNational Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations