Advertisement

Journal of Low Temperature Physics

, Volume 150, Issue 3–4, pp 353–357 | Cite as

Heat Capacity of Liquid 4He Confined in a Nanoporous Glass

  • Keiichi Yamamoto
  • Yoshiyuki Shibayama
  • Keiya Shirahama
Article

Abstract

We report a preliminary study of heat capacities of 4He confined in a nanoporous Gelsil glass that has nanopores of 2.5 nm in diameter. The heat capacity has a broad peak at a temperature far above the superfluid transition temperature obtained by torsional oscillator technique. The heat-capacity peak is attributed to formation of localized Bose-Einstein Condensates in the nanopores, in which the long-range superfluid coherence is destroyed by pore size distribution or random potential inherent to the porous glass.

Keywords

Superfluidity Bose-Einstein condensation Quantum phase transition Porous media 

PACS

67.40.-w 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.L. Sondhi, S.M. Girvin, J.P. Carini, D. Shahar, Rev. Mod. Phys. 69, 315 (1997) CrossRefADSGoogle Scholar
  2. 2.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, I. Bloch, Nature 415, 39 (2002) CrossRefADSGoogle Scholar
  3. 3.
    L. Merchant, J. Ostrick, R.P. Barber Jr., R.C. Dynes, Phys. Rev. B 63, 134508 (2001) CrossRefADSGoogle Scholar
  4. 4.
    L.J. Geerligs, M. Peters, L.E.M. de Groot, A. Verbruggen, J.E. Mooij, Phys. Rev. Lett. 63, 326 (1989) CrossRefADSGoogle Scholar
  5. 5.
    M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989) CrossRefADSGoogle Scholar
  6. 6.
    J.D. Reppy, Physica B+C 126, 335 (1984) CrossRefADSGoogle Scholar
  7. 7.
    J.D. Reppy, B.C. Crooker, B. Hebral, A.D. Corwin, J. He, G.M. Zassenhaus, Phys. Rev. Lett. 84, 2060 (2000) CrossRefADSGoogle Scholar
  8. 8.
    K. Shirahama, M. Kubota, S. Ogawa, N. Wada, T. Watanabe, Phys. Rev. Lett. 64, 1541 (1990) CrossRefADSGoogle Scholar
  9. 9.
    N. Wada, J. Taniguchi, H. Ikegami, S. Inagaki, Y. Fukushima, Phys. Rev. Lett. 86, 4322 (2001) CrossRefADSGoogle Scholar
  10. 10.
    M.H.W. Chan, K.I. Blum, S.Q. Murphy, G.K.S. Wong, J.D. Reppy, Phys. Rev. Lett. 61, 1950 (1988) CrossRefADSGoogle Scholar
  11. 11.
    K. Yamamoto, H. Nakashima, Y. Shibayama, K. Shirahama, Phys. Rev. Lett. 93, 075302 (2004) CrossRefADSGoogle Scholar
  12. 12.
    K. Yamamoto, Y. Shibayama, K. Shirahama, AIP Conf. Proc. 850, 349 (2006) CrossRefADSGoogle Scholar
  13. 13.
    G.M. Zassenhaus, J.D. Reppy, Phys. Rev. Lett. 83, 4800 (1999) CrossRefADSGoogle Scholar
  14. 14.
    G.M. Zassenhaus, Ph.D. Thesis, Cornell University (1999) Google Scholar
  15. 15.
    M. Okaji, T. Watanabe, J. Low Temp. Phys. 32, 555 (1978) CrossRefADSGoogle Scholar
  16. 16.
    J.S. Brooks, R.J. Donnelly, J. Phys. Chem. Ref. Data 6, 51 (1977) ADSCrossRefGoogle Scholar
  17. 17.
    G. Ahlers, Phys. Rev. A 8, 530 (1973) CrossRefADSGoogle Scholar
  18. 18.
    D.F. Brewer, J. Low Temp. Phys. 3, 205 (1970) CrossRefADSGoogle Scholar
  19. 19.
    H.R. Glyde, O. Plantevin, B. Fak, G. Coddens, P.S. Danielson, H. Schober, Phys. Rev. Lett. 84, 2646 (2000) CrossRefADSGoogle Scholar
  20. 20.
    O. Plantevin, H.R. Glyde, B. Fak, J. Bossy, F. Albergamo, N. Mulders, H. Schober, Phys. Rev. B 65, 224505 (2002) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Keiichi Yamamoto
    • 1
  • Yoshiyuki Shibayama
    • 1
  • Keiya Shirahama
    • 1
  1. 1.Department of PhysicsKeio UniversityYokohamaJapan

Personalised recommendations