Advertisement

Journal of Low Temperature Physics

, Volume 148, Issue 3–4, pp 219–224 | Cite as

Acoustic Modes and Momentum Relaxation in 2D Atomic Hydrogen on Helium Surface

  • A. I. Safonov
  • S. S. Demoukh
  • I. I. Safonova
  • I. I. Lukashevich
Article

Abstract

Seeking for manifestations of superfluidity in 2D spin-aligned atomic hydrogen (H) adsorbed on the surface of liquid helium at T∼0.1 K we consider possible acoustic modes in this 2D Bose gas depending on frequency and on characteristic times of energy and momentum transfer. At high frequencies, the analogues of ordinary and second sound are realized in 2D H. At low frequencies, the 2D analogue of the fourth sound is realized: the normal component of hydrogen and ripplons are immobile and only the superfluid component of hydrogen participates the oscillations. We also estimate the rate of momentum relaxation between superfluid hydrogen and ripplons, τ HR −1 T 13/3. The most promising for observing the superfluidity in 2DH is the fourth sound, which could be excited, e.g., by ESR.

PACS

03.75.Kk 05.70.Np 67.40.Pm 67.65.+z 68.65.-k 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.I. Safonov et al., Phys. Rev. Lett. 81, 4545 (1998); J. Low Temp. Phys. 113, 201 (1998) CrossRefADSGoogle Scholar
  2. 2.
    S.A. Vasilyev et al., Phys. Rev. Lett. 89, 153002 (2002) CrossRefADSGoogle Scholar
  3. 3.
    A.I. Safonov, A.A. Kharitonov, I.I. Lukashevich, J. Low Temp. Phys. 138, 295 (2005) CrossRefGoogle Scholar
  4. 4.
    A.I. Safonov, A.A. Kharitonov, I.I. Lukashevich, Pis’ma Zh. Éksp. Teor. Fiz. 82, 161 (2005); J. Exp. Theor. Phys. Lett. 82, 145 (2005) Google Scholar
  5. 5.
    S.A. Vasilyev, J. Järvinen, A.I. Safonov, S. Jaakkola, Phys. Rev. A 69, 023610 (2004) CrossRefADSGoogle Scholar
  6. 6.
    K.R. Atkins, Can. J. Phys. 31, 1165 (1953) MATHGoogle Scholar
  7. 7.
    I.M. Khalatnikov, An Introduction to the Theory of Superfluidity (Nauka, Moscow, 1965; Addison–Wesley, Redwood City, 1988) Google Scholar
  8. 8.
    M.W. Reynolds, G.V. Shlyapnikov, Phys. Lett. A 207, 105 (1992) CrossRefADSGoogle Scholar
  9. 9.
    A.I. Safonov, Pis’ma Zh. Éksp. Teor. Fiz. 81, 212 (2005); J. Exp. Theor. Phys. Lett. 81, 175 (2005) Google Scholar
  10. 10.
    N. Prokof’ev, B. Svistunov, Phys. Rev. A 66, 043608 (2002) CrossRefADSGoogle Scholar
  11. 11.
    U. Al Khawaia, J.O. Andersen, N.P. Proukakis, H.T.C. Stoof, Phys. Rev. A 66, 013615 (2002) CrossRefADSGoogle Scholar
  12. 12.
    D.S. Zimmerman, A.J. Berlinsky, Can. J. Phys. 61, 508 (1983) ADSGoogle Scholar
  13. 13.
    M.W. Reynolds, I.D. Setija, G.V. Shlyapnikov, Phys. Rev. B 46, 575 (1992) CrossRefADSGoogle Scholar
  14. 14.
    A.F. Andreev, D.A. Kompaneets, Zh. Éksp. Teor. Fiz. 61, 2459 (1972); Sov. Phys. J. Exp. Theor. Phys. 34, 1316 (1972) Google Scholar
  15. 15.
    Yu. Kagan, B.V. Svistunov, G.V. Shlyapnikov, J. Exp. Theor. Phys. Lett. 42, 209 (1985) Google Scholar
  16. 16.
    I.B. Mantz, D.O. Edwards, V.U. Nayak, Phys. Rev. Lett. 44, 66 (1980); Errata 44, 1094 (1980) CrossRefADSGoogle Scholar
  17. 17.
    A.I. Safonov, S.S. Demukh, A.A. Kharitonov, Pis’ma Zh. Éksp. Teor. Fiz. 79, 362 (2004); J. Exp. Theor. Phys. Lett. 79, 304 (2004) Google Scholar
  18. 18.
    I.B. Mantz, D.O. Edwards, V.U. Nayak, J. de Physique (Paris), Colloquec 39, C6–300 (1978) Google Scholar
  19. 19.
    I. Shinkoda, W.N. Hardy, J. Low Temp. Phys. 85, 99 (1991) CrossRefGoogle Scholar
  20. 20.
    D.J. Bishop, J.D. Reppy, Phys. Rev. B 22, 5171 (1980) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • A. I. Safonov
    • 1
  • S. S. Demoukh
    • 1
  • I. I. Safonova
    • 1
  • I. I. Lukashevich
    • 1
  1. 1.Institute for Superconductivity and Solid State PhysicsRussian Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations