Advertisement

Journal of Low Temperature Physics

, Volume 147, Issue 5–6, pp 601–613 | Cite as

Vortex Interaction with Mesoscopic Surface Cavities in Superconductors

  • L. N. Shehata
  • A. Y. Afram
Article

The conformal mapping method is used to study the problem of flux line interaction with surface cavities having cylindrical profile and characteristic size \({\ell < < \lambda}\) , i.e., within mesoscopic scale, where λ is the penetration length. It is shown that the metastable states are achieved when the dimensions of the surface irregularities do not exceed the coherence length ξ. Our study shows that the surface barrier may vanish at some weak point at which the surface irregularities have mesoscopic scales. On the other hand, a remarkable decrease in the surface barrier occurs when the surface defects size \({\ell > > \lambda}\) . Our results are compared with the available experimental data and theoretical results.

Keywords

mesoscopic cavities surface barrier vortex entry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen D.X., Hermando A., Conde F., Ramfrez J., Gonzalez-Calbet J.M., Vallet M. (1994). J. Appl. Phys. 75: 2578CrossRefADSGoogle Scholar
  2. 2.
    Konczykowski M., Burlachkov L.I., Holtzberg F. (1991). Phys. Rev. B 43: 13703CrossRefADSGoogle Scholar
  3. 3.
    Konczykowski M., Burlachkov L.I., Yeshurum Y., Holtzberg F. (1992). Physica C 194: 155CrossRefADSGoogle Scholar
  4. 4.
    Kopylov V.N., Koshelev A.E., Schegolev I.F. (1990). Phys. C 170: 291CrossRefADSGoogle Scholar
  5. 5.
    Baelus B.J., Peeters F.M. (2002). Phys. Rev. B 65: 104515CrossRefADSGoogle Scholar
  6. 6.
    Baelus B.J., Kadowaki K., Peeters F.M. (2005). Phys. Rev. B 71: 024514CrossRefADSGoogle Scholar
  7. 7.
    Singha Deo P., Schweigert V.A., Peeters F.M.(1999). Phys. Rev. B 59: 6039CrossRefADSGoogle Scholar
  8. 8.
    Ulmaier H.A., Gauster W.F.(1966). J. Appl. Phys. 37: 4519CrossRefADSGoogle Scholar
  9. 9.
    Ulmaier H.A.(1966). Phys. Stat. Sol. (b) 17: 631Google Scholar
  10. 10.
    Campbell A.M., Evetts I.E., Dew-Hughas D. (1968). Philos. Mag. 18: 313Google Scholar
  11. 11.
    Morozov N., Zedov E., Konczykowski M., Doyle R.A. (1997). Phys. C 291: 113CrossRefADSGoogle Scholar
  12. 12.
    Bean C.P., Livingston J.D. (1964). Phys. Rev. Lett. 12: 14CrossRefADSGoogle Scholar
  13. 13.
    G. de Gennes Superconductivity of Metals and Alloys, Benjamin, New York (1966), Chapt. 3.Google Scholar
  14. 14.
    Ternovskii F.F., Shehata L.N.(1972). Sov. Phys. JETP 35: 1202Google Scholar
  15. 15.
    J. R. Clem, In Low Temp. Phys.-LT-13, K. D. Timmerhaus, W. J. O’Sullivan, and E. F. Hammel, eds., (Plenum Pub. Corp., New York, (1974) Vol. 3 p. 102.Google Scholar
  16. 16.
    Shehata L.N.(1980). Phys. Stat. Sol. (b) 97: 641Google Scholar
  17. 17.
    Vodolazov D.Yu.(2000). Phys. Rev. B 62: 8691CrossRefADSGoogle Scholar
  18. 18.
    Vodolazov P.Y., Maksimov I.L., Brandt E.H.(2003). Phys. C 384: 211CrossRefADSGoogle Scholar
  19. 19.
    P. Galiako, Ekspt. Teoret. Fiz. 50, 717 (1966) [Sov. Phys. JETP 23, 475 (1966)].Google Scholar
  20. 20.
    Gurevich A.V., Kovachev V.T.(1988). Phys. Stat. Sol. (b) 145: K47Google Scholar
  21. 21.
    Chikumoto N., Konczykowski M., Motohira N., Kishio K., Kitazawa K. (1991). Phys. C 185–189: 1835CrossRefGoogle Scholar
  22. 22.
    Bussiere J.F.(1976). Phys. Lett. A. 58: 343CrossRefADSGoogle Scholar
  23. 23.
    Bussiere J.F., Suenaga M. (1976). J. Appl. Phys. 47: 707CrossRefADSGoogle Scholar
  24. 24.
    Bussiere J.F., Kavachev V.T. (1978). J. Appl. Phys. 49: 2526CrossRefADSGoogle Scholar
  25. 25.
    Bass F., Freilikher V.D., Shapiro B.Ya., Shvartser M.(1996). Phys. C 260: 231CrossRefADSGoogle Scholar
  26. 26.
    Geim A.K., Dubonos S.V., Grigorieva I.V., Novoselov K.S., Peeters F.M., Schweigert V.A.(2000). Nature 407: 55CrossRefADSGoogle Scholar
  27. 27.
    Peeters F.M., Schweigert V.A., Baelus B.J.(2002). Phys. C 369: 158CrossRefADSGoogle Scholar
  28. 28.
    A. A. Abrikosov, J. Ekspt. Teoret. Fiz. 32, 1442 (1957) [Sov. Phys. JETP 5, 1174 (1957)]; and 46, 1464 (1964) [Sov. Phys. JETP 19, 988 (1964)].Google Scholar
  29. 29.
    G. S. Mkrchyan and V. V. Schmidt, J. Ekspt. Teoret. Fiz. 61, 367 (1971) [Sov. Phys. JETP 34, 195 (1972)].Google Scholar
  30. 30.
    Nordborg H., Vinokur V.M. (2000). Phys. Rev. B 62: 12408CrossRefADSGoogle Scholar
  31. 31.
    Schmidt V.V., Mkrchyan G.S. (1974). Sov. Phys. Usp. 17: 170CrossRefADSGoogle Scholar
  32. 32.
    V. V. Schmidt, J. Ekspt. Teoret. Fiz. 61, 398 (1971) [Sov. Phys. JETP 34, 211 (1972)].Google Scholar
  33. 33.
    Van de Vondel J., de Souza Silva C.C., Zhu B.Y., Morello M., Moshchalkov V.V.(2005). Phys. Rev. Lett. 94: 057003CrossRefADSGoogle Scholar
  34. 34.
    Berdiyorov G.R., Cabral L.R.E., Peeters F.M. (2005). J. Math. Phys. 46: 095105CrossRefMathSciNetGoogle Scholar
  35. 35.
    Schweigert V.A., Peeters F.M. (1999). Phys. Rev. Lett. 83: 2409CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Mathematics and Theoretical PhysicsAtomic Energy AuthorityNasr City, CairoEgypt

Personalised recommendations