Advertisement

Journal of Low Temperature Physics

, Volume 147, Issue 3–4, pp 405–420 | Cite as

Magnetoelastic Coupling Across the Metamagnetic Transition in Ca2-x Sr x RuO4 \({(0.2\leq x\leq 0.5)}\)

  • J. Baier
  • P. Steffens
  • O. Schumann
  • M. Kriener
  • S. Stark
  • H. Hartmann
  • O. Friedt
  • A. Revcolevschi
  • P. G. Radaelli
  • S. Nakatsuji
  • Y. Maeno
  • J. A. Mydosh
  • T. Lorenz
  • M. Braden
Article

The magnetoelastic coupling in Ca1.8Sr0.2RuO4 and in Ca1.5Sr0.5RuO4 has been studied combining high-resolution dilatometer and diffraction techniques. Both compounds exhibit strong anomalies in the thermal-expansion coefficient at zero and at high-magnetic field as well as an exceptionally large magnetostriction. All these structural effects, which are strongest in Ca1.8Sr0.2 RuO4, point to a redistribution of electrons between the different t2g orbitals tuned by temperature and magnetic field. The temperature and the field dependence of the thermal-expansion anomalies in Ca1.8Sr0.2RuO4 yield evidence for a critical end-point lying close to the low-temperature metamagnetic transition; however, the expected scaling relations are not well fulfilled.

PACS Numbers

78.70.Nx 75.40.Gb 74.70.-b 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maeno Y., Hashimoto H., Yoshida K., Nishizaki S., Fujita T., Bednorz J.G., Lichtenberg F. (1994). Nature 372: 532CrossRefADSGoogle Scholar
  2. 2.
    Mackenzie A.P., Maeno Y. (2003). Rev. Mod. Phys. 75: 657CrossRefADSGoogle Scholar
  3. 3.
    S. Nakatsuji et al., J. Phys. Soc. Jpn. 66, 1868 (1997); S. Nakatsuji and Y. Maeno, Phys. Rev. Lett. 84, 2666 (2000).Google Scholar
  4. 4.
    Braden et al.M. (1998a). Phys. Rev. B 58: 847CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Fang Z., Terakura K. (2001). Phys. Rev. B 64: 020509CrossRefADSGoogle Scholar
  6. 6.
    Fang Z., Nagaosa N., Terakura K. (2004). Phys. Rev. B 69: 045116CrossRefADSGoogle Scholar
  7. 7.
    Friedt O., Braden M., André G., Adelmann P., Nakatsuji S., Maeno Y. (2001). Phys. Rev. B 63: 174432CrossRefADSGoogle Scholar
  8. 8.
    Nakatsuji S., Maeno Y. (2000). Phys. Rev. B 62: 6458CrossRefADSGoogle Scholar
  9. 9.
    Nakatsuji S., Hall D., Balicas L., Fisk Z., Sugahara K., Yoshioka M., Maeno Y. (2003). Phys. Rev. Lett. 90: 137202CrossRefADSGoogle Scholar
  10. 10.
    R. Jin et al., cond-mat/0112405.Google Scholar
  11. 11.
    Friedt O., Steffens P., Braden M., Sidis Y., Nakatsuji S., Maeno Y. (2004). Phys. Rev. Lett. 93: 147404CrossRefADSGoogle Scholar
  12. 12.
    Sidis Y., Braden M., Bourges P., Hennion B., NishiZaki S., Maeno Y., Mori Y. (1999). Phys. Rev. Lett. 83: 3320CrossRefADSGoogle Scholar
  13. 13.
    Braden M., Sidis Y., Bourges P., Pfeuty P., Kulda J., Mao Z., Maeno Y. (2002). Phys. Rev. B 66: 064522CrossRefADSGoogle Scholar
  14. 14.
    Anisimov et al. V.I.(2002). Eur. Phys. J. B 25: 191CrossRefADSGoogle Scholar
  15. 15.
    Balicas L., Nakatsuji S., Hall D., Ohnishi T., Fisk Z., Maeno Y., Singh D.J. (2005). Phys. Rev. Lett. 95: 106407CrossRefADSGoogle Scholar
  16. 16.
    Perry et al. R.S. (2001). Phys. Rev. Lett. 86: 2661CrossRefADSGoogle Scholar
  17. 17.
    Grigera et al. S.A. (2001). Science 294: 329CrossRefADSGoogle Scholar
  18. 18.
    Grigera S.A., Gegenwart P., Borzi R.A., Weickert F., Schofield A.J., Perry R.S., Tayama T., Sakakibara T., Maeno Y., Green A.G., Mackenzie A.P. (2004). Science 306: 1154CrossRefADSGoogle Scholar
  19. 19.
    Kriener M., Steffens P., Baier J., Schumann O., Zabel T., Lorenz T., Friedt O., Müller R., Gukasov A., Radaelli P., Reutler P., Revcolevschi A., Nakatsuji S., Maeno Y., Braden M. (2005). Phys. Rev. Lett. 95: 267403CrossRefADSGoogle Scholar
  20. 20.
    Baier J., Tabel T., Kriener M., Steffens P., Schumann O., Friedt O., Freimuth A., Revcolevschi A., Nakatsuji S., Maeno Y., Lorenz T., Braden M. (2006). Physica B 378: 497CrossRefADSGoogle Scholar
  21. 21.
    Nakatsuji S., Maeno Y. (2001). J. Solid State Chem. 156: 26CrossRefADSGoogle Scholar
  22. 22.
    Brändli G., Griessen R. (1973). Cryogenics 13: 299CrossRefGoogle Scholar
  23. 23.
    Lorenz T., Ammerahl U., Büchner B., Revcolevschi A. (1997). Phys. Rev. B 55: 5914CrossRefADSGoogle Scholar
  24. 24.
    Pott R., Schefzyk R. (1983). J. Phys. E – Sci. Instrum. 16: 444CrossRefADSGoogle Scholar
  25. 25.
    O. Heyer, Diploma Thesis, University of Cologne (2006).Google Scholar
  26. 26.
    P. Steffens et al., unpublished results.Google Scholar
  27. 27.
    Gegenwart P., Weickert F., Garst M., Perry R.S., Maeno Y. (2006). Phys. Rev. Lett. 96: 136402CrossRefADSGoogle Scholar
  28. 28.
    Zhang J., Ismail R., Moore G., Wang S.-C., Ding H., Jin R., Mandrus D., Plummer E.W. (2006). Phys. Rev. Lett. 96: 066401CrossRefADSGoogle Scholar
  29. 29.
    Garst M., Rosch A. (2005). Phys. Rev. B 72: 205129CrossRefADSGoogle Scholar
  30. 30.
    J. Baier, Ph.D-thesis, University of Cologne (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. Baier
    • 1
  • P. Steffens
    • 1
  • O. Schumann
    • 1
  • M. Kriener
    • 1
    • 2
  • S. Stark
    • 1
  • H. Hartmann
    • 1
  • O. Friedt
    • 1
  • A. Revcolevschi
    • 3
  • P. G. Radaelli
    • 4
  • S. Nakatsuji
    • 2
  • Y. Maeno
    • 2
  • J. A. Mydosh
    • 1
  • T. Lorenz
    • 1
  • M. Braden
    • 1
  1. 1.II. Physikalisches InstitutUniversity of CologneKölnGermany
  2. 2.Department of PhysicsKyoto UniversityKyotoJapan
  3. 3.Lab. de Physico-Chimie de l’État SolideUniversité Paris-SudOrsay CedexFrance
  4. 4.ISIS Facility, Rutherford Appleton LaboratoryCCLRCChilton, Didcot, OxfordshireUK

Personalised recommendations