Journal of Low Temperature Physics

, Volume 147, Issue 3–4, pp 111–122 | Cite as

Anisotropic Transferred Hyperfine Interaction in a Heavy-Fermion Compound: Paramagnetic NMR Line Shift in a CeCu6 Single Crystal

  • Gerda Fischer
  • Bernd Pilawa
  • Max Winkelmann
  • Elmar Dormann

We report on single crystal nuclear magnetic resonance spectroscopy for 63Cu at the Cu(5) sites in the heavy-fermion paramagnet CeCu6 for constant external magnetic field strength (7 T) applied along the “hardest” magnetic direction b and varied temperature (5 − 100 K). The transferred field coupling constant α b (5) =  +  3.40(31) kOe B is derived from the van Vleck like paramagnetic line shift. These results establish the predominance of anisotropic spin and orbital polarization acting on the Cu sites neighbouring the Ce 4f local moment. Because magnetically induced electric quadrupolar interaction at this Cu site is not unusually enhanced, we conclude that the exchange polarization mechanism at the Ce site is the source of the observed anisotropy. Impact of the substitution of Cu(2) by Au on the Ce3+ single-ion ground state properties and magnetic characteristics of CeCu6-x Au x is discussed.


strongly correlated systems heavy fermions quantum hall effect 

PACS Numbers

76.60.-k 71.27.+a 75.20.Hr 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coqblin B, Schrieffer J.R, (1969). Phys. Rev. 185, 847CrossRefADSGoogle Scholar
  2. 2.
    Cornut B, Coqblin B, (1972). Phys. Rev. B 5: 4541CrossRefADSGoogle Scholar
  3. 3.
    Bhattacharjee A.K, Coqblin B, (1976). Phys. Rev. B 13: 3441CrossRefADSGoogle Scholar
  4. 4.
    von Löhneysen H., (1999). J. Magn. Magn. Mater. 200, 532CrossRefADSGoogle Scholar
  5. 5.
    Winkelmann M, Fischer G, Pilawa B, Brooks M.S.S., Dormann E, (2006). Phys. Rev. B 73: 165107CrossRefADSGoogle Scholar
  6. 6.
    Dormann E, Handbook on the Physics and Chemistry of Rare Earths, by K. A. Gschneidner, Jr. and L. Eyring, (eds.), Elsevier/North Holland, Amsterdam (1991), Vol. 14, p. 63.Google Scholar
  7. 7.
    Abragam A, Bleaney B, (1970) Electron paramagnetic resonance of transition ions. Clarendon Press, Oxford, p. 259Google Scholar
  8. 8.
    Kaplan N, Dormann E, Buschow K.H.J, Lebenbaum D, (1973). Phys. Rev. B 7, 40CrossRefADSGoogle Scholar
  9. 9.
    Fekete D, Grayevsky A, Kaplan N, Walker E, (1975). Solid State Commun. 17, 573CrossRefGoogle Scholar
  10. 10.
    Bauer M, Brooks M.S.S, Dormann E, (1993). Phys. Rev. B 48: 1014CrossRefADSGoogle Scholar
  11. 11.
    Dormann E, Huck M, Buschow K.H.J., (1977). Z. Physik B27, 141CrossRefGoogle Scholar
  12. 12.
    Cromer D.T, Larson A.C, Roof R.B, Jr., (1960). Acta. Crystallogr. 13, 913CrossRefGoogle Scholar
  13. 13.
    Pilawa B, Proc. Int. Conf. on Magnetism ICM 2006, Kyoto, J. Magn. Magn. Mater. submitted.Google Scholar
  14. 14.
    Winkelmann M, Fischer G, Pilawa B, Dormann E, (2002). Eur. Phys. J. B 26, 199CrossRefADSGoogle Scholar
  15. 15.
    Oppelt A, Kaplan N, Fekete D, Kaplan N, (1980). J. Magn. Magn. Mater. 15–18: 660CrossRefADSGoogle Scholar
  16. 16.
    Kropp H, Dormann E, Grayevsky A, Kaplan N, (1982). Solid State Commun. 44: 1109CrossRefGoogle Scholar
  17. 17.
    Pop I, Coldea M, Niculescu V, (1974). Czech J. Phys. Sec. B 24: 1398CrossRefADSGoogle Scholar
  18. 18.
    Coldea M, Pop I, (1975). Acta Phys. Pol. A 48, 359Google Scholar
  19. 19.
    Degani J, Kaplan N, (1973). Phys. Rev. B 7: 2132CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Gerda Fischer
    • 1
  • Bernd Pilawa
    • 1
  • Max Winkelmann
    • 1
  • Elmar Dormann
    • 1
  1. 1.Physikalisches InstitutUniversität KarlsruheKarlsruheGermany

Personalised recommendations