Journal of Low Temperature Physics

, Volume 146, Issue 1–2, pp 227–252 | Cite as

Dispersive Charge and Flux Qubit Readout as a Quantum Measurement Process


We analyze the dispersive readout of superconducting charge and flux qubits as a quantum measurement process. The measurement oscillator frequency is considered much lower than the qubit frequency. This regime is interesting because large detuning allows for strong coupling between the measurement oscillator and the signal transmission line, thus allowing for fast readout. Due to the large detuning we may not use the rotating wave approximation in the oscillator-qubit coupling. Instead we start from an approximation where the qubit follows the oscillator adiabatically, and show that non-adiabatic corrections are small. We find analytic expressions for the measurement time, as well as for the back-action, both while measuring and in the off-state. The quantum efficiency is found to be unity within our approximation, both for charge and flux qubit readout.


uantum computing quantum measurements superconducting qubits quantum electrical circuits single Cooper-pair box 

PACS Numbers

74.50.+r 03.65.-w 03.67.Lx 42.50.Lc 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Wendin and V. S. Shumeiko, in Handbook of Theoretical and Computational Nanotechnology, M. Rieth and W. Schommers, eds., American Scienti.c Publishers (2006).Google Scholar
  2. 2.
    Johansson G., Tornberg L., Shumeiko V.S., Wendin G. (2006). J. Phys.: Condens. Matter 18: S901CrossRefADSGoogle Scholar
  3. 3.
    Nakamura Y., Pashkin Y.A., Tsai J.S. (1999). Nature (London) 398:786CrossRefADSGoogle Scholar
  4. 4.
    Astafiev O., Pashkin Yu.A., Nakamura Y., Yamamoto T., Tsai J.S. (2004). Phys. Rev. Lett. 93:267007CrossRefADSGoogle Scholar
  5. 5.
    Chiorescu I., Nakamura Y., Harmans C.J.P.M., Mooij J.E. (2003). Science 299:1869CrossRefADSGoogle Scholar
  6. 6.
    Vion D., Cottet A., Aassime A., Joyez P., Pothier H., Urbina C., Esteve D., Devoret M.H. (2002). Science 296:886CrossRefADSGoogle Scholar
  7. 7.
    Ithier G., Collin E., Joyez P., Meeson P.J., Vion D., Esteve D., Chiarello F., Shnirman A., Makhlin Y., Schrie J., Schön G. (2005). Phys. Rev. B 72:134519CrossRefADSGoogle Scholar
  8. 9.
    Grajcar M., Izmalkov A., Il’ichev E., Wagner Th., Oukhanski N., Hubner U., May T., Zhilyaev I., Hoenig H.E., Greenberg Ya.S., Shnyrkov V.I., Born D., Krech W., Meyer H.-G., Alec Maassen van den Brink, Amin M.H.S. (2004). Phys. Rev. B 69:060501(R)CrossRefADSGoogle Scholar
  9. 9.
    Lupascu A., Verwijs C.J.M., Schouten R.N., Harmans C.J.P.M., Mooij J.E. (2004). Phys. Rev. Lett. 93:177006CrossRefADSGoogle Scholar
  10. 10.
    Wallraff A., Schuster D.I., Blais A., Frunzio L., Majer J., Devoret M.H., Girvin S.M., Schoelkopf R.J. (2005). Phys. Rev. Lett. 95:060501CrossRefADSGoogle Scholar
  11. 11.
    Duty T., Johansson G., Bladh K., Gunnarsson D., Wilson C., Delsing P. (2005). Phys. Rev. Lett. 95:206807CrossRefADSGoogle Scholar
  12. 12.
    Sillanpä ä M.A., Lehtinen T., Paila A., Makhlin Yu., Roschier L., Hakonen P.J. (2005). Phys. Rev. Lett. 95:206806CrossRefADSGoogle Scholar
  13. 13.
    V. Braginski and F. Khalili, Quantum Measurements, Cambridge University Press (1992).Google Scholar
  14. 14.
    Blais A., Huang R., Wallraff A., Girvin S.M., Schoelkopf R.J. (2004). Phys. Rev. A 69:062320CrossRefADSGoogle Scholar
  15. 15.
    Johansson G., Tornberg L., Wilson C. (2006). Phys. Rev. B 74:100504(R)ADSGoogle Scholar
  16. 16.
    C. W. Gardiner and P. Zoller Quantum Noise, Springer-Verlag Berlin Heidelberg, 1991 (2000).Google Scholar
  17. 17.
    Yurke B., Denker J.S. (1984). Phys. Rev. A 29:1419CrossRefADSGoogle Scholar
  18. 18.
    Shnirman A., Schön G., Hermon Z. (1997). Phys. Rev. Lett. 79:2371CrossRefADSGoogle Scholar
  19. 19.
    M. Devoret, Quantum Fluctuations in Electrical Circuits, Les Houches, Session LXIII (1995).Google Scholar
  20. 20.
    H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Massachusetts (1980).Google Scholar
  21. 21.
    Friedman J.R., Patel V., Chen W., Tolpygo S.K., Lukens J.E. (2000). Nature 406:43f́b45CrossRefGoogle Scholar
  22. 22.
    Makhlin Y., Schön G., Shnirman A. (2001). Rev. Mod. Phys. 73:357CrossRefADSGoogle Scholar
  23. 23.
    L. Landau, Phys. Z. Sowjetunion 2, 46 (1932); C. Zener, Proceedings of the Royal Society A 137, 696 (1932).Google Scholar
  24. 24.
    M. E. Peskin and D. V. Schröder, An Introduction to Quantum Field theory Westview Press (1995).Google Scholar
  25. 25.
    S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics Oxford University Press (1997).Google Scholar
  26. 26.
    Bertet P., Chiorescu I., Burkard G., Semba K., Harmans C.J.P.M., DiVincenzo D.P., Mooij J.E. (2005). Phys. Rev. Lett. 95:257002CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Applied Quantum PhysicsGöteborgSweden

Personalised recommendations