Journal of Low Temperature Physics

, Volume 146, Issue 1–2, pp 161–191 | Cite as

Tunnel Junction as a Noise Probe


The paper investigates theoretically effects of noise on low-bias parts of IV curves of tunnel junctions. The analysis starts from the effect of shot noise from an additional (noise) junction on the Coulomb blockaded Josephson junction in high-impedance environment. Asymmetry of shot noise characterized by its odd moments results in asymmetry of the IV curve of the Josephson junction. At high currents through the noise junction the IV curve is sensitive to electron counting statistics. The theory is generalized on another type of noise (phase noise of a monochromatic AC input) and on a normal Coulomb blockaded tunnel junction. The effect of shot noise on the IV curve of a superconducting Josephson junction in low-impedance environment is also analyzed. From this effect one can obtain information on the time necessary for an electron to tunnel through the junction responsible for shot noise. In summary, the analysis demonstrates, that the low-bias part of the IV curves of tunnel junctions can be a sensitive probe of various types of noise.

Pacs Numbers

05.40.Ca 74.50.+r 74.78.Na 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blanter Ya.M., M. Büttiker (2000) Phys. Rep. 336, 1CrossRefADSGoogle Scholar
  2. 2.
    Lesovik G.B. (1994) Pis’ma Zh. Eksp. Teor. Fiz. 60, 806 [JETP Lett. 60, 820 (1994)]ADSGoogle Scholar
  3. 3.
    Levitov L.S., Lee H., Lesovik G.B. (1996) J. Math. Phys. 37, 4845MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Shelankov A., Rammer J. (2003) Europhys. Lett. 63, 485CrossRefADSGoogle Scholar
  5. 5.
    Gutman D.B., Gefen Y. (2003) Phys. Rev. B 68, 035302CrossRefADSGoogle Scholar
  6. 6.
    Beenakker C.W.J., Kindermann M., Nazarov Yu.V. (2003) Phys. Rev. Lett. 90, 176802CrossRefADSGoogle Scholar
  7. 7.
    Kindermann M., Nazarov Yu.V., Beenakker C.W.J. (2003) Phys. Rev. Lett. 90, 246805CrossRefADSGoogle Scholar
  8. 8.
    Levitov L.S., Reznikov M. (2004) Phys. Rev. B 70, 115305CrossRefADSGoogle Scholar
  9. 9.
    Ojanen T., Heikkilä T.T. (2006) Phys. Rev. B 73, 020501CrossRefADSGoogle Scholar
  10. 10.
    Brosco V., Fazio R., Hekking F.W.J., Pekola J.P. (2006) Phys. Rev. B 74, 024524CrossRefADSGoogle Scholar
  11. 11.
    Reulet B., Senzier J., Prober D.E. (2003) Phys. Rev. Lett. 91, 196601CrossRefADSGoogle Scholar
  12. 12.
    Bomze Yu., Gershon G., Shovkun D., Levitov L.S., Reznikov M. (2005) Phys. Rev. Lett. 95, 176601CrossRefADSGoogle Scholar
  13. 13.
    J. Delahaye, R. Lindell, M. S. Sillanpää, M. A. Paalanen, E. B. Sonin, and P. J. Hakonen, cond-mat/0209076 (unpublished).Google Scholar
  14. 14.
    Lindell R., Delahaye J., Sillanpää M.A., Heikkilä T.T., Sonin E.B., Hakonen P.J. (2004) Phys. Rev. Lett. 93, 197002CrossRefADSGoogle Scholar
  15. 15.
    Sonin E.B. (2004) Phys. Rev. B 70, 140506(R)CrossRefADSGoogle Scholar
  16. 16.
    Heikkilä T.T., Virtanen P., Johansson G., Wilhelm F.K. (2004) Phys. Rev. Lett. 93, 247005CrossRefADSGoogle Scholar
  17. 17.
    Deblock R., Onak E., Gurevich L., Kouwenhoven L.P. (2003) Science 301, 203CrossRefADSGoogle Scholar
  18. 18.
    Tobiska J., Nazarov Yu.V. (2004) Phys. Rev. Lett. 93, 106801CrossRefADSGoogle Scholar
  19. 19.
    J. P. Pekola, Phys. Rev. Lett. 93, 206601 (2004); J. P. Pekola, T. E. Nieminen, M. Meschke, J. M. Kivioja, A. O. Niskanen, and J. J. Vartiainen, ibid. 95, 197004 (2005).Google Scholar
  20. 20.
    Ankerhold J., Grabert H. (2005) Phys. Rev. Lett. 95, 18601Google Scholar
  21. 21.
    Averin D.V., Nazarov Yu.V., Odintsov A.A. (1990) Physica B 165&166, 945CrossRefGoogle Scholar
  22. 22.
    Schön G., Zaikin A.D. (1990) Phys. Rep. 198, 237CrossRefADSGoogle Scholar
  23. 23.
    G. L. Ingold and Yu. V. Nazarov, in Single Charge Tunneling, Coulomb Blockade Phenomena in Nanostructures, H. Grabert and M. Devoret (Eds.), Plenum, New York (1992), p. 21.Google Scholar
  24. 24.
    Abramowitz M., Stegun I.A. (1972) Handbook of Mathematical Functions. Dover, New YorkMATHGoogle Scholar
  25. 25.
    G. -L. Ingold, H. Grabert, and U. Eberhardt, Phys. Rev. B 50, 395 (1994); G. -L. Ingold and H. Grabert, Phys. Rev. Lett. 83, 3721 (1999).Google Scholar
  26. 26.
    A further analysis of the effect of an arbitrary high noise current I s on a Josephson junction was recently done by E. B. Sonin, cond-mat/0607636.Google Scholar
  27. 27.
    P. J. Hakonen, A. Paila, and E. B. Sonin, cond-mat/0604479 (to be published in Phys. Rev. B).Google Scholar
  28. 28.
    Loudon R. (2000) The Quantum Theory of Light. Oxford University Press, OxfordMATHGoogle Scholar
  29. 29.
    The difference between the effective capacitance and the geometric capacitance was recently detected experimentally by M. A. Sillanpää, T. Lehtinen, A. Paila, Yu. Makhlin, L. Roschier, and P. J. Hakonen, Phys. Rev. Lett. 95, 206806 (2005).Google Scholar
  30. 30.
    Falci G., Bubanja V., Schön (1991) Z. Phys. B–Condensed Matter 85, 451CrossRefADSGoogle Scholar
  31. 31.
    A. A. Odintsov, G. Falci, and G. Schön, Phys. Rev. B 44, 13089 (1991); P. Joyez and D. Esteve, Phys. Rev. B 56, 1848 (1997).Google Scholar
  32. 32.
    Weiss U. (1999) Quantum Dissipative Systems. World Scientific, SingaporeMATHGoogle Scholar
  33. 33.
    Büttiker M., Landauer R. (1986) IBM J. Res. Dev. 30, 451CrossRefGoogle Scholar
  34. 34.
    Hauge E.H., Støvneng J.A. (1989) Rev. Mod. Phys. 61, 917CrossRefADSGoogle Scholar
  35. 35.
    Landauer R. (1994) Rev. Mod. Phys. 66, 217CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Racah Institute of PhysicsHebrew University of JerusalemJerusalemIsrael
  2. 2.Low Temperature LaboratoryHelsinki University of TechnologyHUTFinland

Personalised recommendations