Skip to main content
Log in

On The Theory of Isotope-effect in the d-wave Superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The isotope-effect in a two-dimensional model of the d-wave phonon-exchange superconductor is studied. It is shown that the mean-field critical temperature, the Berezinskii–Kosterlitz–Thouless critical temperature and the superconducting gap strongly depend on the phonon frequency only in some range of the model parameters. These dependencies have different from the BCS theory forms. A qualitative comparison of the results with experimental data on some high-temperature superconductors is made. In particular, it is shown that the isotope-effect is significant in the case of strong electron–phonon coupling, when the phonon frequency is small compared to the free electron bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P.Franck, in Physical Properties of High Temperature Superconductors IV, ed. D. M.Ginsberg, World Scientific, Singapore, P.189 (1994).

  2. Kulic M.L., (2000). Phys.Rep. 338, 1

    Article  ADS  Google Scholar 

  3. Vedeneev S.I., Jansen A.G.M., Samuey P. et al., (1994). Phys. Rev. B 49: 9823

    Article  ADS  Google Scholar 

  4. Chung J.-H., Egami T., McQueeney R.J. et al., (2003). Phys. Rev. B 67: 014517

    Article  ADS  Google Scholar 

  5. Lanzara A, Bogdanov P.V, Zhou X.J, et al., (2001). Nature (London) 412, 510

    Article  ADS  Google Scholar 

  6. Zhao G.-M., Kirtikar V, Morris D, (2001). Phys. Rev. B 63: 220506

    Article  ADS  Google Scholar 

  7. Khasanov R, Shengelaya A, Morenzoni E, et al., Phys. Rev. B 68, 220506 (R) (2003).

  8. Zhou X.J, Shi J, Yoshida T, et al., cond-mat/0405130.

  9. Gweon G.H, Sagawara T, Zhou S.Y, et al., (2004). Nature 430, 187

    Article  ADS  Google Scholar 

  10. Weber W, (1987). Phys. Rev. Lett. 58: 1371

    Article  ADS  Google Scholar 

  11. Marsiglio F, Carbotte J.P, (1987). Phys. Rev. B 36: 3937

    Article  ADS  Google Scholar 

  12. Daemen L.L, Overhauser A.W, (1990). Phys. Rev. B 41: 7182

    Article  ADS  Google Scholar 

  13. Akis R, Carbotte J.P, (1990). Phys. Rev. B 41: 11661

    Article  ADS  Google Scholar 

  14. Schachinger E, Greeson M.G, Carbotte J.P, (1990). Phys. Rev. B 42, 406

    Article  ADS  Google Scholar 

  15. Tsuei C.C, Newns D.M, Chi C.C, Pattnaik P.C, (1990). Phys. Rev. Lett. 65: 2724

    Article  ADS  Google Scholar 

  16. Crespi V.H, Cohen M.L, Penn D.R, (1991). Phys. Rev. B 43: 12921

    Article  ADS  Google Scholar 

  17. Bussmann-Holder A., Bishop A.R, (1991). Phys. Rev. B 44: 2853

    Article  ADS  Google Scholar 

  18. Williams P.J, Carbotte J.P, (1992). Phys. Rev. B 45: 7984

    Article  ADS  Google Scholar 

  19. Alexandrov A.S, Phys. Rev. B. 46, 14932 (R) (1992).

    Google Scholar 

  20. Krishnamurthy H.R, Newns D.M, Pattnaik P.C, (1994). Phys. Rev. B 49: 3520

    Article  ADS  Google Scholar 

  21. Yokoya Y, (1997). Phys. Rev. B. 56: 6107

    Article  ADS  Google Scholar 

  22. Kresin V.Z, and Wolf S.A, Phys. Rev. B. 49, 3652 (R) (1994).

  23. Kresin V.Z, Bill A, Wolf S.A, Ovchinnikov Yu., (1997). Phys. Rev. B 56, 107

    Article  ADS  Google Scholar 

  24. Sagai S, (1992). Phys. Rev. B. 45: 7577

    Article  ADS  Google Scholar 

  25. Crespi V.H, Cohen M.L, Penn D.R, (1993). Phys. Rev. B 48, 398

    Article  ADS  Google Scholar 

  26. Bussmann-Holder A., Bishop A.R, Genzel L., Simon A, (1997). Phys. Rev. B 55: 11754

    Article  Google Scholar 

  27. Piekarz P, Konior J, (2001). Phys. Rev. B s63: 214517

    Article  ADS  Google Scholar 

  28. Pao C.-H., Schüttler H.B., (1999). Phys. Rev. B 60: 1283

    Article  ADS  Google Scholar 

  29. Greco A, Zeyher R, (1999). Phys. Rev. B 60: 1296

    Article  ADS  Google Scholar 

  30. Eremin I, Kamayev O, Eremin M.V, (2004). Phys. Rev. B 69: 094517

    Article  ADS  Google Scholar 

  31. Doppeler A, Millis A.J, Phys. Rev. B 65, 100301 (R) (2002).

  32. Schneider T, (2003). Phys. Rev. B 67: 134514

    Article  ADS  Google Scholar 

  33. Kornilovitch P.E, Alexandrov A.S, (2004). Phys. Rev. B 70: 224511

    Article  ADS  Google Scholar 

  34. Phillips J.C, (2005). Phys. Rev. B 71: 184505

    Article  ADS  Google Scholar 

  35. Maksimov E.G, Dolgov O.V, and Kulic M.L, preprint cond-mat/0408251.

  36. Seibold G, and Grilli M, preprint cond-mat/0409506.

  37. Emery V, Kivelson S.A, (1995). Nature 374, 434

    Article  ADS  Google Scholar 

  38. Emery V, Kivelson S.A, (1995). Phys. Rev. Lett. 74: 3253

    Article  ADS  Google Scholar 

  39. Loktev V.M, Quick R.M, Sharapov S.G, (2001). Phys. Rep. 349, 1

    Article  MATH  ADS  Google Scholar 

  40. Loktev V.M, Sharapov S.G, Turkowski V.M, (1998). Physica C 296, 84

    Article  ADS  Google Scholar 

  41. Loktev V.M, Turkowski V.M, (1998). JETP 87, 329

    Article  ADS  Google Scholar 

  42. Kleinert H, (1978). Fort. Phys. 28, 565

    Google Scholar 

  43. Schrieffer J.R, (1964). Theory of Superconductivity. Benjamin, New York

    MATH  Google Scholar 

  44. Izyumov Yu.A., Skryabin Yu.M, (1988). Statistical Mechanics of Magnetically Ordered Systems. Plenum, New York

    Google Scholar 

  45. Loktev V.M, Turkowski V.M, Sharapov S.G, (1998). Theor. and Math. Phys. 115, 694

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Loktev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loktev, V.M., Turkowski, V.M. On The Theory of Isotope-effect in the d-wave Superconductors. J Low Temp Phys 143, 115–130 (2006). https://doi.org/10.1007/s10909-006-9212-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-006-9212-x

Keywords

Navigation