Skip to main content
Log in

Orientational Ordering of ortho–para Mixtures of Crystals of Homonuclear Diatomic Molecules: Theoretical Evidence for Reentrance

  • Original Article
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have developed a theoretical formalism to calculate the orientational phase diagram of ortho–para (or odd-J/even-J) mixtures of homonuclear diatomic molecules in the low-pressure solid phases. In particular, our formalism allows for the explicit disorder present in such mixtrues. While the formalism is general, here we apply it to the quantum anisotropic planar rotor model, a two-dimensional model of coupled rotors. Our calculated phase diagram, separating phases of disorder and short-range order is reentrant, when an equilibrium mixture of odd-J/even-J species is considered. A reentrant phase diagram separating states of disorder and long-range order is known to exist in all-J species in both two and three dimensions. The phase diagram we find for the thermal mixture of odd-J/even-J species exhibits reentrance over a wider range of coupling constants than the corresponding all-J species. We also investigate systems where the odd-J fraction is fixed as a function of temperature. We find that even 1% odd-J mixture exhibits a phase diagram different from the pure even-J case, indicating that the even-J molecules play important role in orientational ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. A.B. Harris and H. Meyer Can. J. Phys. 63, 3 (1985).

    CAS  Google Scholar 

  2. 2. N.S. Sullivan, C.M. Edmards, Y. Lin, and C. Zhou Can. J. Phys. 65, 1463 (1987).

    CAS  Google Scholar 

  3. 3. A.F. Goncharov, J.H. Eggert, I.I. Mazin, R.J. Hemley, and H.-K. Mao, Phys. Rev. B 54, R 15 590 (1996).

    Article  Google Scholar 

  4. 4. U.T. Höchli, K. Knorr, and A. Loidl Adv. Phys. 39, 405 (1990).

    Google Scholar 

  5. 5. K. Binder and A.P. Young, Rev. Mod. Phys. 58, 801 (1985).

    Article  Google Scholar 

  6. 6. K. Binder and J.D. Reger, Adv. Phys. 41, 547 (1992).

    CAS  Google Scholar 

  7. 7. K. Binder, J. Non-Cryst. Solids 307, 1 (2002).

    Article  Google Scholar 

  8. 8. V.B. Kokshenev, Phys. Rev. B 54, 1 (1996).

    Article  Google Scholar 

  9. 9. V.B. Kokshenev, J. Low Temp. Phys. 104, 1 (1996).

    Article  CAS  Google Scholar 

  10. 10. V.B. Kokshenev, J. Low Temp. Phys. 104, 25 (1996).

    Article  CAS  Google Scholar 

  11. 11. V.B. Kokshenev, J. Low Temp. Phys. 111, 489 (1998).

    Article  CAS  Google Scholar 

  12. 12. N.S. Sullivan and V.B. Kokshenev, New J. Phys. 5, 1 (2003).

    Article  Google Scholar 

  13. 13. V.B. Kokshenev and N.S. Sullivan, Solid State Comm. 126, 435 (2003).

    Article  CAS  Google Scholar 

  14. 14. I.F. Silvera Rev. Mod. Phys. 52, 393 (1980).

    Article  CAS  Google Scholar 

  15. 15. H.K. Mao and R.J. Hemley Rev. Mod. Phys. 66, 671 (1994).

    Article  CAS  Google Scholar 

  16. 16. M.A. Strzhemechny and R.J. Hemley, Phys. Rev. Lett. 85, 5595 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. 17. I.I. Mazin, R.J. Hemley, A.F. Goncharov, M. Hanfland, and H.-K. Mao, Phys. Rev. Lett. 78, 1066 (1997).

    Article  CAS  Google Scholar 

  18. 18. R. Martonak, D. Marx, and P. Nielaba, Phys. Rev. E 55, 2184 (1997).

    Article  CAS  Google Scholar 

  19. 19. M.H. Müser and J. Ankerhold Europhys. Lett. 44, 216 (1998).

    Article  Google Scholar 

  20. 20. B. Hetényi, M.H. Müser and B.J. Berne Phys. Rev. Lett. 83, 4606 (1999).

    Article  Google Scholar 

  21. 21. B. Hetényi, and B.J. Berne J. Chem. Phys. 114, 3674 (2001).

    Article  Google Scholar 

  22. 22. Yu.A. Freiman, V.V. Sumarokov, and A.P. Brodyanskii J. Phys. Cond. Matt. 3, 3855 (1991).

    Article  Google Scholar 

  23. 23. A.P. Brodyanskii, V.V. Sumarokov, Yu.A. Freiman, and A. Jeżowski Low. Temp. Phys. 19, 368 (1993).

    Google Scholar 

  24. 24. F.Moshary, N.H. Chen, and I. Silvera Phys. Rev. Lett. 71, 3814 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. 25. R.P. Feynman Statistical Mechanics, Perseus Books, Reading, MA (1998).

    Google Scholar 

  26. 26. E. Šimánek, Phys. Rev. B 32, 500 (1985).

    Article  Google Scholar 

  27. 27. M.V. Simkin, Phys. Rev. B 44, 7074 (1991).

    Article  Google Scholar 

  28. 28. S.F. O’Shea and M.L. Klein, Chem. Phys. Lett. 66, 381 (1979).

    Article  CAS  Google Scholar 

  29. 29. S.F. O’Shea and M.L. Klein, Phys. Rev. B 25, 5882 (1982).

    Article  CAS  Google Scholar 

  30. 30. O.G. Mouritsen and A.J. Berlinsky, Phys. Rev. Lett. 48, 181 (1982).

    Article  CAS  Google Scholar 

  31. 31. D. Marx and P. Nielaba, J. Chem. Phys. 102, 4538 (1995).

    Article  CAS  Google Scholar 

  32. 32. D. Marx and H. Wiechert, Adv. Chem. Phys. 95, 213 (1996).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetényi, B., Scandolo, S. & Tosatti, E. Orientational Ordering of ortho–para Mixtures of Crystals of Homonuclear Diatomic Molecules: Theoretical Evidence for Reentrance. J Low Temp Phys 139, 753–763 (2005). https://doi.org/10.1007/s10909-005-5486-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-005-5486-7

Keywords

Navigation