Journal of Low Temperature Physics

, Volume 138, Issue 3–4, pp 687–692 | Cite as

Absence of Fragmentation in Two-Dimensional Bose-Einstein Condensation

  • Juan Pablo Fernández
  • William J. Mullin
Original Article

No Heading

We investigate the possibility that the BEC-like phenomena recently detected on two-dimensional finite trapped systems consist of fragmented condensates. We derive and diagonalize the one-body density matrix of a two-dimensional isotropically trapped Bose gas at finite temperature. For the ideal gas, the procedure reproduces the exact harmonic-oscillator eigenfunctions and the Bose distribution. We use a new collocation-minimization method to study the interacting gas in the Hartree-Fock approximation and obtain a ground-state wavefunction and condensate fraction consistent with those obtained by other methods. The populations of the next few eigenstates increase at the expense of the ground state but continue to be negligible; this supports the conclusion that two-dimensional BEC is into a single state.


Expense Magnetic Material Density Matrix Single State Finite Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. W. J. Mullin, J. Low Temp. Phys. 106, 615 (1997).Google Scholar
  2. 2.
    2. A. Görlitz et al., Phys. Rev. Lett. 87, 130402 (2001); D. Rychtarik, B. Engeser, H.-C. Nägerl, and R. Grimm, Phys. Rev. Lett. 92, 173003 (2004).Google Scholar
  3. 3.
    3. S. D. Heinrichs and W. J. Mullin, J. Low Temp. Phys. 113, 231 (1998); ibid. 114, 571 (1999).Google Scholar
  4. 4.
    4. W. J. Mullin, M. Holzmann, and F. Laloë, J. Low Temp. Phys. 121, 263 (2000).Google Scholar
  5. 5.
    5. P. Nozières, in Bose-Einstein Condensation, edited by A. Griffin, D. W. Snoke, and S. Stringari (Cambridge University Press, Cambridge, 1993), p. 15.Google Scholar
  6. 6.
    6. O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).Google Scholar
  7. 7.
    7. C. Gies, B. P. van Zyl, S. A. Morgan, and D. A. W. Hutchinson, Phys. Rev. A 69, 023616 (2004); L. Pricoupenko, Phys. Rev. A 70, 013601 (2004).Google Scholar
  8. 8.
    8. M. Holzmann and Y. Castin, Eur. Phys. J. D 7, 425 (1999).Google Scholar
  9. 9.
    9. W. Krauth, Phys. Rev. Lett. 77, 3695 (1996).Google Scholar
  10. 10.
    10. W. H. Press, S. A. Teukolsky, W. A. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge, 1992), 2nd ed.Google Scholar
  11. 11.
    11. J. A. C. Weideman and S. C. Reddy, ACM Trans. of Math. Software 26, 465 (2000).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Juan Pablo Fernández
    • 1
  • William J. Mullin
    • 1
  1. 1.Department of PhysicsHasbrouck Laboratory University of MassachusettsAmherstUSA

Personalised recommendations