Advertisement

Journal of Low Temperature Physics

, Volume 138, Issue 3–4, pp 623–628 | Cite as

Coexistence of Vortex Liquid and Solid in Rotating Bose-Einstein Condensate

  • Masahiko Machida
  • Narimasa Sasa
  • Hideki Matsumoto
Original Article

No Heading

We perform computer simulations for the Gross-Pilaevskii equation with a tiny damping in order to study the condensate wave-function in 3-D rotating Bose-Einstein condensate under the trapping potential. We find that the wave-function is divided into two kinds of phases in terms of its coherent feature. The first one is a coherent phase which is characterized by the static vortex lattice located close to the center of the trapping potential, and the second one is an incoherent one which lies outside the first coherent phase and shows vortex liquid like behaviors. The boundary between the two phases is quite sharp like the phase interface as seen in the first-order phase transition. This result suggests that the melting seen in type II superconductors spatially occurs in the rotating Bose-Einstein condensate since the wave-function amplitude decreases with departing from the center of the trap and its coherent feature is overcome by intrinsic fluctuations at a certain distance.

Keywords

Vortex Phase Transition Computer Simulation Magnetic Material Phase Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. K.W.Madison, F. Chevy, V.Bretin, and D.Dalibard, Phys. Rev. Lett., 86, 4443(2001).Google Scholar
  2. 2.
    2. P.C.Haljan, I.Coddington, P.Engels, and E.A.Cornell, Phys.Rev.Lett., 87, 210403(2001).Google Scholar
  3. 3.
    3. C.Raman, J.R.Abo-Shaeer, J.M.Vogels, K.Xu, and W.Ketterle, Phys.Rev.Lett., 87, 210402(2001).Google Scholar
  4. 4.
    4. M.Tsubota, K.Kasamatsu, and M.Ueda, Phys.Rev.A 65, 023603 (2002).Google Scholar
  5. 5.
    5. A.A.Penckwitt, R.J.Ballagh, and C.W.Gardiner, Phys.Rev.Lett., 89, 260402(2002).Google Scholar
  6. 6.
    6. G.Blatter, M.V.Feigelman, V.B.Geshkenbein, A.I.Larkin, and V.M.Vinokur, Rev.Mod.Phys., 66, 1125(1994).Google Scholar
  7. 7.
    7. M.Machida, A.Tanaka, and M.Tachiki, Physica C 288, 199(1997).Google Scholar
  8. 8.
    8. B.M.Herbst, F.Varadi, and M.J.Ablowitz, Math. Comput. Simulation 37, 353(1994).Google Scholar
  9. 9.
    9. T.B.Taha and M.J.Ablowitz, J. Comp. Phys., 55, 203 (1984).Google Scholar
  10. 10.
    10. D.A.Butts and D.S.Rokhsar, Nature, 397, 327(1999).Google Scholar
  11. 11.
    11. C.Lobo, A.Sinatra, and Y.Castin, Phys.Rev.Lett., 92, 020403(2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Masahiko Machida
    • 1
  • Narimasa Sasa
    • 1
  • Hideki Matsumoto
    • 2
  1. 1.CCSEJapan Atomic Energy Research InstituteTaito-ku, Tokyo
  2. 2.Institute of PhysicsUniversity of TsukubaTsukuba, IbarakiJapan

Personalised recommendations