Advertisement

Journal of Low Temperature Physics

, Volume 138, Issue 1–2, pp 415–420 | Cite as

Electron States above the Surfaces of Solid Cryodielectrics for Quantum-Computing.

  • V.V. Zavyalov
  • I.I. Smolyaninov
  • E.A. Zotova
  • A.S. Borodin
  • S.G. Bogomolov
Article

No Heading

Electrons levitating above the surface of liquid He are known to be the promising two-level quantum ensemble, which could become one of the leading contenders for a scalable quantum-computer implementation. Unfortunately, the need to operate at milli-Kelvin temperatures presents a major obstacle and adds to the complexity of the electrons-on-helium based quantum computer design. Previously, we proposed to use the similar electron system based on electrons levitating above solid hydrogen (or, better, neon) cryocrystals as alternative to the liquid-He substrate. Such substitution could help to avoid capillary-wave and high-vapor-pressure problems, and may shift the operation temperatures into the 1-4K range. Now, we present more thorough discussion of the problem and outline some relevant experiments.

Keywords

Hydrogen Electron State Magnetic Material Electron System Neon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. V.S. Edelman, Sov.Phys. Usp. 23, 227 (1980).Google Scholar
  2. 2.
    2. P.M. Platzman and M.I. Dykman, Science 284, 1967 (1999); M.I. Dykman and P.M. Platzman, Fortschritte der Physik 48, (2000).Google Scholar
  3. 3.
    3. M.I. Dykman, P.M. Platzman, and P. Seddighrad, Phys.Rev.B 67, 155402 (2003).Google Scholar
  4. 4.
    4. D.P. DiVincenzo, Computation, arXiv: quant-ph/0002077 (2000).Google Scholar
  5. 5.
    5. M.J. Lea, P.G. Frayne, and Y. Mukharsky, Fortsch. der Physik 48, 1109 (2000).Google Scholar
  6. 6.
    6. G. Papageorgiou, Y. Mukharsky, K. Harrabi, P. Glasson, P. Fozooni, P.G. Frayne, E. Collin, M.J. Lea, Physica E 18, 179, (2003).Google Scholar
  7. 7.
    7. J.M. Goodkind and S. Pilla, Quantum Inf. Comput. 1, 108 (2001); A.J. Dahm, J.M. Goodkind, I. Karakurt, and S. Pilla, J. Low Temp. Phys. 126, 709 (2002); A.J. Dahm, J.A. Heilman, I. Karakurt, and T.J. Peshek, Physica E 18, 169 (2003).Google Scholar
  8. 8.
    8. I.I. Smolyaninov and V.V. Zavyalov, arXiv:cond-mat/0009360 (2000).Google Scholar
  9. 9.
    9. I.B. Levinson, Soviet physics: JETP 68, 395 (1989).Google Scholar
  10. 10.
    10. C.C. Grimes, T.R. Brown, M.L. Burns, and C.L. Zipfel, Phys. Rev. B. 13, 140 (1976).Google Scholar
  11. 11.
    11. D. K. Lambert, and P. L. Richards, Phys. Rev. B, 23, 3282 (1981).Google Scholar
  12. 12.
    12. E. Collin, W. Bailey, P.Fozooni, P.G. Frayne, P. Glasson, K. Harrabi, M.J. Lee, and G. Papageorgiou, Phys.Rev.Lett. 89, 245301 (2002).Google Scholar
  13. 13.
    13. V.S. Edelman, Zh. Eksp. Teor. Fiz. 77, 673 (1979) [Sov.Phys. JETP 50, 338 (1979)].Google Scholar
  14. 14.
    14. A.P. Volodin and V.S. Edelman, Zh. Eksp. Teor. Fiz. 81, 368 (1981) [Sov. Phys. JETP 54, 198 (1981)].Google Scholar
  15. 15.
    15. V.V. Zavyalov and I.I. Smolyaninov, Sov. Phys. JETP Lett. 44, 182 (1986); V.V. Zavyalov and I.I. Smolyaninov, Zh. Eksp. Teor. Fiz. 92, 339 (1987) [Sov. Phys. JETP 65, 194 (1987) V.V. Zavyalov and I.I. Smolyaninov, Zh. Eksp. Teor. Fiz. 94, 307 (1988) [Sov. Phys. JETP 67, 171 (1988).Google Scholar
  16. 16.
    16. V.V. Zavyalov and G. D. Bogomolov, Instruments and Experimental Tech. 25, 708 (1982).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V.V. Zavyalov
    • 1
  • I.I. Smolyaninov
    • 2
  • E.A. Zotova
    • 1
  • A.S. Borodin
    • 1
  • S.G. Bogomolov
    • 1
  1. 1.P.L. Kapitza Institute for Physical Problems Kosygina 2MoscowRussia
  2. 2.Electrical and Computer Engineering DepartmentUniversity of MarylandCollege Park

Personalised recommendations