Advertisement

Journal of Low Temperature Physics

, Volume 138, Issue 1–2, pp 295–300 | Cite as

The role of a surface flow in experiments with atomic hydrogen adsorbed on liquid helium

  • A.I. Safonov
  • A.A. Kharitonov
  • I.I. Lukashevich
Article

No Heading

We apply a quantum hydrodynamics of the surface of 3He-4He solutions to account for the in-plane transport of the two-dimensional (2D) spin-aligned atomic hydrogen (H↓) adsorbed on superfluid helium film. We discuss how the surface flow of 2D H↓ may be traced in experiment thus allowing to study the interaction of the 2D hydrogen with ripplons and surface-bound 3He as well as to observe the superfluidity of the 2D Bose gas of H↓. As an example we consider the formation of the ESR spectrum of the 2D H↓ and find that in spatially non-uniform case the surface flow contributes significantly to the conditions of the ESR spectrum instability observable at high microwave power. We also analyze the conditions at which the surface flow of the 2D hydrogen plays an important role in thermal compression experiments.

Keywords

Microwave Helium Atomic Hydrogen Microwave Power Liquid Helium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. S. A. Vasilyev et al., Phys. Rev. Lett. 89, 153002 (2002).Google Scholar
  2. 2.
    2. S. A. Vasilyev et al., Phys. Rev. A 69, 023610 (2004).Google Scholar
  3. 3.
    3. Yu. Kagan, B. V. Svistunov, and G. V. Shlyapnikov, JETP Lett. 42, 209 (1985).Google Scholar
  4. 4.
    4. A. I. Safonov et al., Phys. Rev. Lett. 81, 4545 (1998).Google Scholar
  5. 5.
    5. B. V. Svistunov, T. W. Hijmans, G. V. Shlyapnikov, and J. T. M. Walraven, Phys. Rev. B 43, 13412 (1991).Google Scholar
  6. 6.
    6. A. Matsubara et al., Physica B 194–196, 899 (1994).Google Scholar
  7. 7.
    7. K. R. Atkins, Can. J. Phys. 31, 1165 (1953).Google Scholar
  8. 8.
    8. D. O. Edwards and W. F. Saam, in Prog. in Low Temp. Phys., ed. by D. F. Brewer, North-Holland Publ. Co., Amsterdam, Vol. VIIA”, 1978, p. 283.Google Scholar
  9. 9.
    9. A. I. Safonov et al., Phys. Rev. Lett. 86, 3356 (2001).Google Scholar
  10. 10.
    10. D. S. Zimmerman and A. J. Berlinsky, Can. J. Phys. 61, 508 (1983).Google Scholar
  11. 11.
    11. I. B. Mantz, D. O. Edwards and V. U. Nayak, Phys. Rev. Lett. 44, 66 (1980); E 44, 1094 (1980); J. Phys. (Paris) Colloque 39, C6-300 (1978).Google Scholar
  12. 12.
    12. W. M. Saslow and A. A. Kumar, Phys. Rev. B 30, 6402 (1984).Google Scholar
  13. 13.
    13. A. I. Safonov, S. S. Demukh, and A. A. Kharitonov, JETP Lett. 79, 304 (2004).Google Scholar
  14. 14.
    14. J. J. Berkhout, E. J. Wolters, R. van Roijen, and J. T. M. Walraven, Phys. Rev. Lett. 57, 2387 (1986).Google Scholar
  15. 15.
    15. S. A. Vasilyev et al., Europhys. Lett. 24, 223 (1993).Google Scholar
  16. 16.
    16. M. W. Reynolds, I. D. Setija and G. V. Shlyapnikov, Phys. Rev. B 46, 575 (1992).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A.I. Safonov
    • 1
  • A.A. Kharitonov
    • 1
  • I.I. Lukashevich
    • 1
  1. 1.Laboratory of Metastable Quantum Systems, ISSSPRRC Kurchatov InstituteMoscowRussia

Personalised recommendations