Skip to main content
Log in

The role of a surface flow in experiments with atomic hydrogen adsorbed on liquid helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

No Heading

We apply a quantum hydrodynamics of the surface of 3He-4He solutions to account for the in-plane transport of the two-dimensional (2D) spin-aligned atomic hydrogen (H↓) adsorbed on superfluid helium film. We discuss how the surface flow of 2D H↓ may be traced in experiment thus allowing to study the interaction of the 2D hydrogen with ripplons and surface-bound 3He as well as to observe the superfluidity of the 2D Bose gas of H↓. As an example we consider the formation of the ESR spectrum of the 2D H↓ and find that in spatially non-uniform case the surface flow contributes significantly to the conditions of the ESR spectrum instability observable at high microwave power. We also analyze the conditions at which the surface flow of the 2D hydrogen plays an important role in thermal compression experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. S. A. Vasilyev et al., Phys. Rev. Lett. 89, 153002 (2002).

    Google Scholar 

  2. 2. S. A. Vasilyev et al., Phys. Rev. A 69, 023610 (2004).

    Google Scholar 

  3. 3. Yu. Kagan, B. V. Svistunov, and G. V. Shlyapnikov, JETP Lett. 42, 209 (1985).

    Google Scholar 

  4. 4. A. I. Safonov et al., Phys. Rev. Lett. 81, 4545 (1998).

    Google Scholar 

  5. 5. B. V. Svistunov, T. W. Hijmans, G. V. Shlyapnikov, and J. T. M. Walraven, Phys. Rev. B 43, 13412 (1991).

    Google Scholar 

  6. 6. A. Matsubara et al., Physica B 194–196, 899 (1994).

    Google Scholar 

  7. 7. K. R. Atkins, Can. J. Phys. 31, 1165 (1953).

    Google Scholar 

  8. 8. D. O. Edwards and W. F. Saam, in Prog. in Low Temp. Phys., ed. by D. F. Brewer, North-Holland Publ. Co., Amsterdam, Vol. VIIA”, 1978, p. 283.

  9. 9. A. I. Safonov et al., Phys. Rev. Lett. 86, 3356 (2001).

    Google Scholar 

  10. 10. D. S. Zimmerman and A. J. Berlinsky, Can. J. Phys. 61, 508 (1983).

    Google Scholar 

  11. 11. I. B. Mantz, D. O. Edwards and V. U. Nayak, Phys. Rev. Lett. 44, 66 (1980); E 44, 1094 (1980); J. Phys. (Paris) Colloque 39, C6-300 (1978).

    Google Scholar 

  12. 12. W. M. Saslow and A. A. Kumar, Phys. Rev. B 30, 6402 (1984).

    Google Scholar 

  13. 13. A. I. Safonov, S. S. Demukh, and A. A. Kharitonov, JETP Lett. 79, 304 (2004).

    Google Scholar 

  14. 14. J. J. Berkhout, E. J. Wolters, R. van Roijen, and J. T. M. Walraven, Phys. Rev. Lett. 57, 2387 (1986).

    Google Scholar 

  15. 15. S. A. Vasilyev et al., Europhys. Lett. 24, 223 (1993).

    Google Scholar 

  16. 16. M. W. Reynolds, I. D. Setija and G. V. Shlyapnikov, Phys. Rev. B 46, 575 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

PACS numbers: 05.70.Np, 67.40.Pm, 67.65.+z, 68.03.Kn, 68.43.Mn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safonov, A., Kharitonov, A. & Lukashevich, I. The role of a surface flow in experiments with atomic hydrogen adsorbed on liquid helium. J Low Temp Phys 138, 295–300 (2005). https://doi.org/10.1007/s10909-005-1566-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-005-1566-y

Keywords

Navigation