Advertisement

Journal of Low Temperature Physics

, Volume 138, Issue 1–2, pp 229–234 | Cite as

Alkali Atoms attached to 3He Nanodroplets

  • R. Mayol
  • F. Ancilotto
  • M. Barranco
  • O. Bünermann
  • M. Pi
  • F. Stienkemeier
Article

No Heading

We have experimentally studied the electronic 3p ← 3s excitation of Na atoms attached to 3 He droplets by means of laser-induced fluorescence as well as beam depletion spectroscopy. From the similarities of the spectra (width/shift of absorption lines) with these of Na on 4 He droplets, we conclude that sodium atoms reside in a “dimple” on the droplet surface and that superfluid-related effects are negligible. The experimental results are supported by Density Functional calculations at zero temperature, which confirm the surface location of Na, K and Rb atoms on 3 He droplets. In the case of Na, the calculated shift of the excitation spectra for the two isotopes is in good agreement with the experimental data.

Keywords

Sodium Spectroscopy Experimental Data Magnetic Material Excitation Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. F. Stienkemeier and A.F. Vilesov. J. Chem. Phys. 115, 10119 (2001).Google Scholar
  2. 2.
    2. F. Stienkemeier, F. Meier, and H. O. Lutz, J. Chem. Phys. 107, 10816 (1997); Eur. Phys. J. D. 9, 313 (1999).Google Scholar
  3. 3.
    3. F. Stienkemeier et al., Z. Phys. D 38, 253 (1996).Google Scholar
  4. 4.
    4. F. Stienkemeier et al., J. Chem. Phys. 102, 615 (1995).Google Scholar
  5. 5.
    5. C. Callegari et al., J. Phys. Chem. 102, 95 (1998).Google Scholar
  6. 6.
    6. F. Brühl, R. Trasea, and W. Ernst, J. Chem. Phys. 115, 10220 (2001).Google Scholar
  7. 7.
    7. F. Ancilotto et al., Z. Phys. B 98, 323 (1995).Google Scholar
  8. 8.
    8. A. Nakayama and K. Yamashita, J. Chem. Phys. 114, 780 (2001).Google Scholar
  9. 9.
    9. J. Reho et al., Faraday Discuss 108, 161 (1997).Google Scholar
  10. 10.
    10. F. Dalfovo, J. Harms, and J.P. Toennies, Phys. Rev. B 58, 3341 (1998).Google Scholar
  11. 11.
    11. J. Harms et al., Phys. Rev. B 63, 184513 (2001).Google Scholar
  12. 12.
    12. V.R. Pandharipande, S.C. Pieper, and R.B. Wiringa, Phys. Rev. B 34, 4571 (1986).Google Scholar
  13. 13.
    13. R. Guardiola, Phys. Rev. B 62, 3416 (2000).Google Scholar
  14. 14.
    14. F. Garcias et al., J. Chem. Phys. 108, 9102 (1998); ibid. 115, 10154 (2001).Google Scholar
  15. 15.
    15. F. Dalfovo et al., Phys. Rev. B 52, 1193 (1995).Google Scholar
  16. 16.
    16. F. Stienkemeier et al., Rev. Sci. Instr. 71, 3480 (2000).Google Scholar
  17. 17.
    17. J. Harms and J. P. Toennies, unpublished results.Google Scholar
  18. 18.
    18. Y. Takahashi et al., Phys. Rev. Lett. 71, 1035 (1993).Google Scholar
  19. 19.
    19. M. Barranco et al., Phys. Rev. B 56, 8997 (1997).Google Scholar
  20. 20.
    20. R. Mayol et al., Phys. Rev. Lett. 87, 145301 (2001).Google Scholar
  21. 21.
    21. S. Stringari and J. Treiner, J. Chem. Phys. 87, 5021 (1987).Google Scholar
  22. 22.
    22. S. H. Patil, J. Chem. Phys. 94, 8089 (1991).Google Scholar
  23. 23.
    23. S.I. Kaurosky al., Phys. Rev. B 50, 6296 (1994).Google Scholar
  24. 24.
    24. S. Grebenev, J.P. Toennies, and A.F. Vilesov, Science 279, 2083 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • R. Mayol
    • 1
  • F. Ancilotto
    • 2
  • M. Barranco
    • 1
  • O. Bünermann
    • 3
  • M. Pi
    • 1
  • F. Stienkemeier
    • 3
  1. 1.Department ECM, Facultat de FíisicaUniversitat de BarcelonaBarcelonaSpain
  2. 2.INFM (Udr Padova and DEMOCRITOS National Simulation Center, Trieste); Dipartimento di Fisica “G. Galilei”Università di PadovaPadovaItaly
  3. 3.Facultät für PhysikUniversität BielefeldBielefeldGermany

Personalised recommendations