Advertisement

Journal of Low Temperature Physics

, Volume 138, Issue 1–2, pp 43–48 | Cite as

Equation of State of Overpressurized Liquid 4He at Zero Temperature

  • Leandra Vranješ
  • Jordi Boronat
  • Joaquim Casulleras
Article

No Heading

In recent experiments, Balibar and collaborators have been able to produce metastable superfluids 4He up to 163 ± 20 bar, a pressure much higher than the freezing point (25 bar). Interpretation of some of their experimental data requires the knowledge of the equation of state of bulk 4He in this high-pressure regime. As this is not experimentally known, they extrapolate to these high pressures using analytical fits to the well-known equation of state in the stable regime. Using the same theoretical analysis that allowed in the past to reproduce accurately the equation of state of liquid 4He in the stable domain, we present now extended results for this equation of state up to ∼ 350 bar. Our calculations, based on the diffusion Monte Carlo method, show some significant differences with the proposed extrapolations, which could be relevant for future experiments.

Keywords

Experimental Data High Pressure Monte Carlo Method Theoretical Analysis Magnetic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. S. Balibar, J. Low. Temp. Phys. 129, 363 (2002).Google Scholar
  2. 2.
    2. F. Werner, G. Baume, A. Hobeika, S. Nascimbene, C. Herrman, F. Caupin, and S. Balibar, to appear in J. Low. Temp. Phys. in July 2004.Google Scholar
  3. 3.
    3. T. Schneider, C.P. Enz, Phys. Rev. Lett. 125, 1186 (1971).Google Scholar
  4. 4.
    4. J. Boronat, J. Casulleras, J. Navarro, Phys. Rev. B 50, 3427 (1994).Google Scholar
  5. 5.
    5. J. Boronat and J. Casulleras, J. Low. Temp. Phys. 110, 443 (1998).Google Scholar
  6. 6.
    6. J. Boronat and J. Casulleras, Phys. Rev. B 49, 8920 (1994).Google Scholar
  7. 7.
    7. R. A. Aziz, F. R. W. McCourt, and C. C. K. Wong, Mol. Phys. 61, 1487 (1987).Google Scholar
  8. 8.
    8. L. Reatto, Nucl. Phys. A328, 253 (1979).Google Scholar
  9. 9.
    9. H. J. Maris, Phys. Rev. Lett. 66, 45 (1991).Google Scholar
  10. 10.
    10. B. Abraham, Y. Eckstein, J.B. Ketterson, M. Kuchnir, and P.R. Roach, Phys. Rev. A 1, 250 (1970).Google Scholar
  11. 11.
    11. F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, J. Treiner, Phys. Rev. B 52, 1193 (1995).Google Scholar
  12. 12.
    12. F. Caupin, D. O. Edwards, H. J. Maris, Physica B 329–333, 185 (2003).Google Scholar
  13. 13.
    13. L. Vranjes, J. Boronat, and J. Casulleras, to be published.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Leandra Vranješ
    • 1
  • Jordi Boronat
    • 2
  • Joaquim Casulleras
    • 2
  1. 1.Faculty of Natural SciencesUniversity of SplitSplitCroatia
  2. 2.Department de Fisica i Enginyeria NuclearUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations