Journal of Low Temperature Physics

, Volume 109, Issue 3–4, pp 511–526 | Cite as

Thermoviscous Effects in Steady and Oscillating Flow of an Isotropic Superfluid: Theory

  • S. Backhaus
  • E. Yu. Backhaus


A calculation is presented of thermoviscous effects in both steady and oscillating flow of an isotropic superfluid through small apertures and channels. These calculations, which are based on the two-fluid model, are motivated by the work of Robinson and Atkins which included only the thermal effects of flow through a superleak. This paper extends these calculations to include the effects of normal fluid flow, compressibility, and thermal expansion. These effects are found to be both dissipative and reactive(nondissipative). The motivation for the extension is to provide a clear understanding of the reactive and dissipative forces at work in superfluid flow experiments. In the paper which immediately follows this one, predictions based on the results of this paper are compared with a wide array of experimental data. This work takes on importance due to the recent discovery of gyroscopic effects, and the possible development of sensitive gyroscopes in experimental cells whose geometry is similar to the one considered in this paper.


Experimental Data Thermal Expansion Fluid Flow Compressibility Magnetic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Robinson, Phys. Rev. 82, 440 (1951).CrossRefGoogle Scholar
  2. 2.
    K. R. Atkins, Proc. Phys. Soc. Lond. A64, 833 (1951).Google Scholar
  3. 3.
    J. S. Brooks, B. B. Sabo, P. C. Schubert, and W. Zimmermann, Jr., Phys. Rev. B 9, 4524 (1979).CrossRefGoogle Scholar
  4. 4.
    S. Backhaus, K. Schwab, A. Loshak, S. Pereverzev, N. Bruckner, J. C. Davis, and R. Packard, J. Low. Temp. Phys. 109, 527 (1997).Google Scholar
  5. 5.
    O. Avenel and E. Varoquaux, Proceedings of LT-21, Czech. J. of Phys. 46(S6), 3319 (1996); K. Schwab, N. Bruckner, and R. E. Packard, Nature 386, 585.Google Scholar
  6. 6.
    M. S. Hawley, F. F. Romanow, and J. E. Warren, in AIP Handbook of Condenser Microphones: Theory, Calibration, and Measurements, G. S. K. Wong and T. F. W. Embleton, eds. AIP Press, Woodbury, NY (1995) p. 17.Google Scholar
  7. 7.
    J. Wilks, The Properties of Liquid and Solid Helium, Clarendon Press, Oxford, (1967) Section 13.8.Google Scholar
  8. 8.
    R. T. Swim and H. E. Rorschach, Phys. Rev. 97, 25 (1955); H. E. Rorschach, Phys. Rev. 105, 785 (1957).CrossRefGoogle Scholar
  9. 9.
    O. Avenel and E. Varoquaux, Phys. Rev. Lett. 55, 2704 (1985); B. P. Beecken and W. Zimmermann, Jr., Phys. Rev. B 35, 74 (1987); A. Amar. Y. Sasaki, R. Lozes, J. C. Davis, and R. E. Packard, Phys. Rev. Lett. 68, 2624 (1992).CrossRefPubMedGoogle Scholar
  10. 10.
    S. Backhaus and R. E. Packard, Proceedings of LT-21, Czech J. of Phys. 46(S5), 2743 (1996).Google Scholar
  11. 11.
    S. J. Putterman, Superfluid Hydrodynamics, North-Holland, Amsterdam (1974) Chapter 2.Google Scholar
  12. 12.
    D. C. Carless, H. E. Hall, and J. R. Hook, J. Low. Temp. Phys. 50, 605 (1983).CrossRefGoogle Scholar
  13. 13.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, New York (1959), p. 62.Google Scholar
  14. 14.
    P. M. Morse, Vibration and Sound, 2nd ed., McGraw-Hill, New York (1948), p. 247.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1997

Authors and Affiliations

  • S. Backhaus
    • 1
  • E. Yu. Backhaus
    • 1
  1. 1.Physics DepartmentUniversity of CaliforniaBerkeleyUSA

Personalised recommendations