Skip to main content
Log in

Thermoviscous Effects in Steady and Oscillating Flow of an Isotropic Superfluid: Theory

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A calculation is presented of thermoviscous effects in both steady and oscillating flow of an isotropic superfluid through small apertures and channels. These calculations, which are based on the two-fluid model, are motivated by the work of Robinson and Atkins which included only the thermal effects of flow through a superleak. This paper extends these calculations to include the effects of normal fluid flow, compressibility, and thermal expansion. These effects are found to be both dissipative and reactive(nondissipative). The motivation for the extension is to provide a clear understanding of the reactive and dissipative forces at work in superfluid flow experiments. In the paper which immediately follows this one, predictions based on the results of this paper are compared with a wide array of experimental data. This work takes on importance due to the recent discovery of gyroscopic effects, and the possible development of sensitive gyroscopes in experimental cells whose geometry is similar to the one considered in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. F. Robinson, Phys. Rev. 82, 440 (1951).

    Article  Google Scholar 

  2. K. R. Atkins, Proc. Phys. Soc. Lond. A64, 833 (1951).

    Google Scholar 

  3. J. S. Brooks, B. B. Sabo, P. C. Schubert, and W. Zimmermann, Jr., Phys. Rev. B 9, 4524 (1979).

    Article  Google Scholar 

  4. S. Backhaus, K. Schwab, A. Loshak, S. Pereverzev, N. Bruckner, J. C. Davis, and R. Packard, J. Low. Temp. Phys. 109, 527 (1997).

    Google Scholar 

  5. O. Avenel and E. Varoquaux, Proceedings of LT-21, Czech. J. of Phys. 46(S6), 3319 (1996); K. Schwab, N. Bruckner, and R. E. Packard, Nature 386, 585.

    Google Scholar 

  6. M. S. Hawley, F. F. Romanow, and J. E. Warren, in AIP Handbook of Condenser Microphones: Theory, Calibration, and Measurements, G. S. K. Wong and T. F. W. Embleton, eds. AIP Press, Woodbury, NY (1995) p. 17.

    Google Scholar 

  7. J. Wilks, The Properties of Liquid and Solid Helium, Clarendon Press, Oxford, (1967) Section 13.8.

    Google Scholar 

  8. R. T. Swim and H. E. Rorschach, Phys. Rev. 97, 25 (1955); H. E. Rorschach, Phys. Rev. 105, 785 (1957).

    Article  Google Scholar 

  9. O. Avenel and E. Varoquaux, Phys. Rev. Lett. 55, 2704 (1985); B. P. Beecken and W. Zimmermann, Jr., Phys. Rev. B 35, 74 (1987); A. Amar. Y. Sasaki, R. Lozes, J. C. Davis, and R. E. Packard, Phys. Rev. Lett. 68, 2624 (1992).

    Article  PubMed  Google Scholar 

  10. S. Backhaus and R. E. Packard, Proceedings of LT-21, Czech J. of Phys. 46(S5), 2743 (1996).

    Google Scholar 

  11. S. J. Putterman, Superfluid Hydrodynamics, North-Holland, Amsterdam (1974) Chapter 2.

    Google Scholar 

  12. D. C. Carless, H. E. Hall, and J. R. Hook, J. Low. Temp. Phys. 50, 605 (1983).

    Article  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, New York (1959), p. 62.

    Google Scholar 

  14. P. M. Morse, Vibration and Sound, 2nd ed., McGraw-Hill, New York (1948), p. 247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Backhaus, S., Backhaus, E.Y. Thermoviscous Effects in Steady and Oscillating Flow of an Isotropic Superfluid: Theory. J Low Temp Phys 109, 511–526 (1997). https://doi.org/10.1007/s10909-005-0099-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-005-0099-8

Keywords

Navigation