Skip to main content
Log in

Visually Guided Search Behavior during Walking in Insects with Different Habitat Utilization Strategies

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

A Correction to this article was published on 01 January 2020

This article has been updated

Abstract

This review examines visually guided search behavior during walking in different species and developmental stages of insects having contrasting habitat utilization strategies. The discussion focuses on mantises, short-horned grasshoppers and crickets. Although generally short-horned grasshoppers are travelers, whereas mantises are ambush predators, all of these insects exhibit visually guided behavior during walking in the search for food sites and shelter. In crickets, which are central place foragers, visually guided behavior during walking is also important for nest site homing. Despite differences in habitat utilization, these three insect groups all use searches incorporating intermittent locomotion, where the distances traveled and duration of pauses have a distinct functional significance. However, there are also locomotion pattern variations, such as loops, zigzags, spiral patterns and straight lines. Search strategies during walking include searches with and without visual landmarks. The detection and recognition of stationary visual landmarks is based on self-induced retinal image displacement, with differing underlying neuronal mechanisms in the three insect groups. If a visual landmark is identified as a suitable target, a direct approach is elicited under either open- or closed-loop conditions, depending on the situation. In the presence of more than one suitable target object, the behavioral response can be temporarily restricted to stimuli associated with a particular area of the visual field, while information from other areas of the visual field is suppressed. The review concludes that there are gaps in knowledge concerning the various questions and thus further research is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 01 February 2020

    The original version of this article unfortunately contains some mistakes in literature references.

References

  • Anderson CL, Kasumovic MM (2017) Development rate rather than social environment influences cognitive performance in Australian black field crickets, Teleogryllus commodus. PeerJ 5:pe3563

    Google Scholar 

  • Atkins G, Atkins S, Schoun D, Stout JF (1987) Scototaxis and shape discrimination in the female cricket Acheta domesticus in an arena and on a compensatory treadmill. Physiol Entomol 12:125–133

    Google Scholar 

  • Bailey EV, Harris MO (1991) Visual behaviors of the migratory grasshopper, Melanoplus sanguinipes F. (Orthoptera: Acrididae). J Insect Behav 4:707–726

    Google Scholar 

  • Battiston R, Fontana P (2010) Colour change and habitat preferences in Mantis religiosa. Bull Insectology 63:85–89

    Google Scholar 

  • Bazazi S, Bartumeus F, Hale JJ, Couzin ID (2012) Intermittent motion in desert locusts: Behavioural complexity in simple environments. PLoS Comput Bio 8:e1002498

    CAS  Google Scholar 

  • Bell WJ (1990) Searching behavior patterns in insects. Annu Rev Entomol 35:447–467

    Google Scholar 

  • Berger FA (1985) Morphologie und Physiologie einiger visueller Interneuronen in den optischen Ganglien der Gottesanbeterin Mantis religiosa. Doctoral dissertation, University of Düsseldorf, Düsseldorf, Germany

  • Beugnon G, Campan R (1989) Homing in the field cricket, Gryllus campestris. J Insect Behav 2:187–198

    Google Scholar 

  • Blum M, Labhart T (2000) Photoreceptor visual fields, ommatidial array and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye. J Comp Physiol A 186:119–128

    CAS  PubMed  Google Scholar 

  • Brunner D, Labhart T (1987) Behavioural evidence for polarization vision in crickets. Physiol Entomol 12:1–10

    Google Scholar 

  • Bui Huy B, Campan R (1982) Etude comparative de quelques aspects de la vision des formes chez deux espèces de chenilles de Lépidoptères: Arctia caja et Galleria melonella. Bull Soc Hist Nat, Toulouse 118: 199–222

  • Bult R, Mastebroek HAK (1994) Response characteristics of wide-field non-habituating non-directional motion detecting neurons in the optic lobe of the locust, Locusta migratoria. J Comp Physiol A 174:723–729

    Google Scholar 

  • Burtt ET, Catton WT (1969) Resolution of the locust eye measured by rotation of radial striped patterns. Proc R Soc Lond B Biol Sci 173:513–529

    Google Scholar 

  • Cartwright BA, Collett TS (1983) Landmark learning in bees - experiments and models. J Comp Physiol A 151:521–543

    Google Scholar 

  • Cheung A, Zhang S, Stricker C, Srinivasan MV (2007) Animal navigation: the difficulty of moving in a straight line. Biol Cybern 97:47–61

    PubMed  Google Scholar 

  • Cheung A, Zhang S, Stricker C, Srinivasan MV (2008) Animal navigation: general properties of directed walks. Biol Cybern 99:197–217

    PubMed  Google Scholar 

  • Cleal K, Prete FR (1996) The predatory strike of free ranging praying mantises, Sphodromantis lineola (Burr.). II. Strikes in the horizontal plane. Brain Behav Evol 48:191–204

    CAS  PubMed  Google Scholar 

  • Collett TS (1978) Peering – a locust behavour pattern for obtaining motion parallax information. J Exp Biol 76:237–241

    Google Scholar 

  • Collett TS, Paterson CR (1991) Relative motion parallax and target localisation in the locust, Schistocerca gregaria. J Comp Physiol A 169:615–621

    Google Scholar 

  • Collett M, Chittka L, Collett TS (2013) Spatial memory in insect navigation. Curr Biol 23:R789–R800

    CAS  PubMed  Google Scholar 

  • Dittmar L, Stürzl W, Baird E, Boeddeker N, Egelhaaf M (2010) Goal seeking in honeybees: matching of optic flow snapshots? J Exp Biol 213:2913–2923

    PubMed  Google Scholar 

  • Doria MD, Morand-Ferron J, Bertram SM (2019) Spatial cognitive performance is linked to thigmotaxis in field crickets. Anim Behav 150:15–25

    Google Scholar 

  • Dukas R (2002) Behavioural and ecological consequences of limited attention. Philos Trans R Soc Lond B 357:1539–1547

    Google Scholar 

  • Egelhaaf M, Borst A (1989) Transient and steady-state response properties of movement detectors. J Opt Soc Am A 6:116–127

    CAS  PubMed  Google Scholar 

  • Endlein T, Sitti M (2018) Innate turning preference of leaf-cutting ants in the absence of external orientation cues. J Exp Biol 221:1–9

    Google Scholar 

  • Eriksson ES (1980) Movement parallax and distance perception in the grasshopper (Phaulacridium vittatum (Sjöstedt)). J Exp Biol 86:337–340

    Google Scholar 

  • Evans AR (2016) A study of the behaviour of the Australian field cricket T. commodus (Walker) (Orthoptera: Gryllidae) in the field and in habitat simulations. Ethology 62:269–290

    Google Scholar 

  • Fauria K, Campan R (1998) Do solitary bees Osmia cornuta Latr. and Osmia lignaria Cresson use proximal visual cues to localize their nest? J Insect Behav 11:649–669

    Google Scholar 

  • Fenk LM, Poehlmann A, Straw AD (2014) Asymmetric processing of visual motion for simultaneous object and background responses. Curr Biol 24:2913–2919

    CAS  PubMed  Google Scholar 

  • Gepner R, Mihovilovic Skanata M, Bernat NM, Kaplow M, Gershow M (2015) Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration. eLife 4:e06229

    PubMed Central  Google Scholar 

  • Goulet M, Campan R, Lambin M (1981) The visual perception of relative distances in the wood-cricket, Nemobius sylvestris. Physiol Entomol 6:357–367

    Google Scholar 

  • Hale RJ (2000) Nest utilisation and recognition by juvenile gryllacridids (Orthoptera: Gryllacrididae). Austr J Zool 48:643–652

    Google Scholar 

  • Hale RJ, Bailey WJ (2004) Homing behaviour of juvenile Australian raspy crickets (Orthoptera: Gryllacrididae). Physiol Entomol 29:426–435

    Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch B 11:513–524

    Google Scholar 

  • Hein AM, Carrara F, Brumley DR, Stocker R, Levin SA (2016) Natural search algorithms as a bridge between organisms, evolution, and ecology. PNAS 113:9413–9420

    CAS  PubMed  Google Scholar 

  • Heinze S (2014) Polarized-light processing in insect brains: recent insights from the desert locust, the monarch butterfly, the cricket, and the fruit fly. In: Horváth G (ed) Polarized light and polarization vision in animal sciences. Springer, Berlin, Heidelberg, pp 61–111

    Google Scholar 

  • Henze MJ, Labhart T (2007) Haze, clouds and limited sky visibility: polarotactic orientation of crickets under difficult stimulus conditions. J Exp Biol 210:3266–3276

    PubMed  Google Scholar 

  • Herzmann D, Labhart T (1989) Spectral sensitivity and absolute threshold of polarization vision in crickets: a behavioral study. J Comp Physiol A 165:315–319

    Google Scholar 

  • Higgins CM (2004) Nondirectional motion may underlie insect behavioral dependence on image speed. Biol Cybern 91:326–332

    PubMed  Google Scholar 

  • Hills TT (2006) Animal foraging and the evolution of goal-directed cognition. Cogn Sci 30:3–41

    PubMed  Google Scholar 

  • Hoffmann G (1983) The random elements in the systematic search behaviour of the desert isopod Hemilepistus reaumuri. Behav Ecol Sociobiol 13:81–92

    Google Scholar 

  • Hoffmann G (1985) The influence of landmarks on the systematic search behaviour of the desert isopod Hemilepistus reaumuri - I. role of the landmark made by the animal. Behav Ecol Sociobiol 17:325–334

    Google Scholar 

  • Homberg U (2015) Sky compass orientation in desert locusts—evidence from field and laboratory studies. Front Behav Neurosci 9:346

    PubMed  PubMed Central  Google Scholar 

  • Horn E, Fischer M (1979) Fixation sensitive areas in the eyes of the walking fly Calliphora erythrocephala. Biol Cybern 31:159–162

    Google Scholar 

  • Horridge GA (1986) A theory of insect vision: velocity parallax. Proc R Soc Lond B Biol Sci 229:13–27

    Google Scholar 

  • Horridge A (2005) The spatial resolutions of the apposition compound eye and its neuro-sensory feature detectors: observation versus theory. J Insect Physiol 51:243–266

    CAS  PubMed  Google Scholar 

  • Horridge A, Duelli P (1979) Anatomy of the regional differences in the eye of the mantis Ciulfina. J Exp Biol 80:165–190

    Google Scholar 

  • Hyden K, Kral K (2005) The role of edges in the selection of a jump target in Mantis religiosa. Behav Process 70:122–131

    Google Scholar 

  • Jeanrot N, Campan R, Lambin M (1981) Functional exploration of the visual field of the wood-cricket, Nemobius sylvestris. Physiol Entomol 6:27–34

    Google Scholar 

  • Kirszenblat L, Ertekin D, Goodsell J, Zhou Y, Shaw PJ, van Swinderen B (2018) Sleep regulates visual selective attention in Drosophila. J Exp Biol 221:jeb191429

    PubMed  PubMed Central  Google Scholar 

  • Knaden M, Graham P (2016) The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu Rev Entomol 61:63–76

    CAS  PubMed  Google Scholar 

  • Köck A, Jakobs A-K, Kral K (1993) Visual prey discrimination in monocular and binocular praying mantis Tenodera sinensis during postembryonic development. J Insect Physiol 39:485–491

    Google Scholar 

  • Koenig S, Wolf R, Heisenberg M (2016) Visual attention in flies—dopamine in the mushroom bodies mediates the after-effect of cueing. PLoS One 11:e0161412

    PubMed  PubMed Central  Google Scholar 

  • Kral K (1999) Binocular vision and distance estimation. In: Prete FR, Wells H, Wells PH, Hurd LE (eds) The praying mantids. The Johns Hopkins University Press, Baltimore, pp 114–140

    Google Scholar 

  • Kral K (2008a) Similarities and differences in the peering-jump behavior of three grasshopper species (Orthoptera: Caelifera). Insect Sci 15:369–374

    Google Scholar 

  • Kral K (2008b) Spatial vision in binocular and monocular common field grasshoppers (Chorthippus brunneus). Physiol Entomol 33:233–237

    Google Scholar 

  • Kral K (2012) How far stationary contrast boundaries can be away to elicit behavioral responses in praying mantis. J Insect Behav 25:127–136

    Google Scholar 

  • Kral K (2014) Orientation behavior with and without visual cues in newly hatched and adult praying mantis. J Insect Behav 27:192–205

    Google Scholar 

  • Kral K, Poteser M (1997) Motion parallax as a source of distance information in locusts and mantids. J Insect Behav 10:145–163

    Google Scholar 

  • Kral K, Poteser M (2009) Relationship between body size and spatial vision in the praying mantis—an ontogenetic study. J Orthop Res 18:153–158

    Google Scholar 

  • Kramer DL, McLaughlin RL (2001) The behavioral ecology of intermittent locomotion. Am Zool 41:137–153

    Google Scholar 

  • Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379

    CAS  PubMed  Google Scholar 

  • Lambin M (1984) Retinal scanning and visual inputs in freely walking crickets. Physiol Entomol 9:181–190

    Google Scholar 

  • Land MF (1997) Visual acuity in insects. Annu Rev Entomol 42:147–177

    CAS  PubMed  Google Scholar 

  • Liske E (1989) Neck hair plate sensilla of the praying mantis: central projections of the afferent neurones and their physiological responses to imposed head movement in the yaw plane. J Insect Physiol 35:677–687

    Google Scholar 

  • Liske E, Mohren W (1984) Saccadic head movements of the praying mantis, with particular reference to visual and proprioceptive information. Physiol Entomol 9:29–38

    Google Scholar 

  • Lönnendonker U, Scharstein H (1991) Fixation and optomotor response of walking Colorado beetles: interaction with spontaneous turning tendencies. Physiol Entomol 16:65–76

    Google Scholar 

  • Macquart D, Beugnon G, Latil G (2008) Sensorimotor sequence learning in the ant Gigantiops destructor. Anim Behav 75:1693–1701

    Google Scholar 

  • Maldonado H (1970) The deimatic reaction in the praying mantis Stagmatoptera biocellata. J Comp Physiol A 68:60–71

    Google Scholar 

  • Mashanova A, Oliver TH, Jansen VA (2009) Evidence for intermittency and a truncated power law from highly resolved aphid movement data. J R Soc Interface 7:199–208

    PubMed  PubMed Central  Google Scholar 

  • Moorhouse JE, Fosbrooke IHM, Kennedy JS (1978) ‘Paradoxical driving’ of walking activity in locusts. J Exp Biol 72:1–16

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    CAS  PubMed  Google Scholar 

  • Mulkern GB (1969) Behavioral influences on food selection in grasshoppers (Orthoptera: Acrididae). Entomol Exp Appl 12:509–523

    Google Scholar 

  • Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci U S A 85:5287–5290

    PubMed  PubMed Central  Google Scholar 

  • Müller M, Wehner R (1994) The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis. J Comp Physiol A 175:525–530

    Google Scholar 

  • Nityananda V (2016) Attention-like processes in insects. Proc R Soc Lond B Biol Sci 283:20161986

    Google Scholar 

  • Osorio D (1991) Mechanisms of early visual processing in the medulla of the locust optic lobe: how self-inhibition, spatial pooling, and signal rectification contribute to the properties of transient cells. Vis Neurosci 7:345–355

    CAS  PubMed  Google Scholar 

  • Osorio D, Srinivasan MV, Pinter RB (1990) What causes edge fixation in walking flies? J Exp Biol 149:281–292

    CAS  PubMed  Google Scholar 

  • Pinter RB (1979) Inhibition and excitation in the locust DCMD receptive field: spatial frequency, temporal and spatial characteristics. J Exp Biol 80:191–216

    Google Scholar 

  • Poteser M, Kral K (1995) Visual distance discrimination between stationary targets in praying mantis: an index of the use of motion parallax. J Exp Biol 198:2127–2137

    CAS  PubMed  Google Scholar 

  • Poteser M, Pabst M-A, Kral K (1998) Proprioceptive contribution to distance estimation by motion parallax in a praying mantid. J Exp Biol 201:1483–1491

    Google Scholar 

  • Rind FC (1987) Non-directional, movement sensitive neurones of the locust optic lobe. J Comp Physiol A 161:477–494

    Google Scholar 

  • Rossel S (1979) Regional differences in photoreceptor performance in the eye of the praying mantis. J Comp Physiol 131:95–112

    Google Scholar 

  • Rossel S (1980) Foveal fixation and tracking in the praying mantis. J Comp Physiol 139:307–331

    Google Scholar 

  • Rowell CHF (1967) Experiments on aggregations of Phymateus purpurascens (Orthoptera, Acrididae, Pyrgomorphinae). J Zool 152:179–193

    Google Scholar 

  • Sakura M, Takasuga K, Watanabe M, Eguchi E (2003) Diurnal and circadian rhythm in compound eye of cricket (Gryllus bimaculatus): changes in structure and photon capture efficiency. Zool Sci 20:833–840

    PubMed  Google Scholar 

  • Sareen P, Wolf R, Heisenberg M (2011) Attracting the attention of a fly. Proc Natl Acad Sci U S A 108:7230–7235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz-Waubke M (1998) Wanderverhalten und Aktionsraum adulter Chorthippus pullus (PHILIPPI 1830) (Orthoptera, Acrididae) in einer Wildflußlandschaft bei Salzburg. Linzer Biol Beitr 30:605–611

    Google Scholar 

  • Sobel EC (1990) The locust’s use of motion parallax to measure distance. J Comp Physiol A 167:579–588

    CAS  PubMed  Google Scholar 

  • Srinivasan MV, Lehrer M, Kirchner WH, Zhang SW (1991) Range perception through apparent image speed in freely flying honeybees. Vis Neurosci 6:519–535

    CAS  PubMed  Google Scholar 

  • Van Swinderen B (2007) Attention-like processes in Drosophila require short-term memory genes. Science 315:1590–1593

    PubMed  Google Scholar 

  • Visser JH (1988) Host-plant finding by insects: orientation, sensory input and search patterns. J Insect Physiol 34:259–268

    Google Scholar 

  • Vitzthum H, Müller M, Homberg U (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22:1114–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walcher F, Kral K (1994) Visual deprivation and distance estimation in the praying mantis larvae. Physiol Entomol 19:230–240

    Google Scholar 

  • Wallace GK (1959) Visual scanning in the desert locust, Schistocerca gregaria. J Exp Biol 36:512–545

    Google Scholar 

  • Warrant E, Dacke M (2016) Visual navigation in nocturnal insects. Physiol 31:182–192

    Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology Vol. VII/6c, Springer, Berlin, Heidelberg, New York, pp 287-616

    Google Scholar 

  • Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol 142:325–338

    Google Scholar 

  • Wessnitzer J, Mangan M, Webb B (2008) Place memory in crickets. Proc R Soc Lond B Biol Sci 275:915–921

    Google Scholar 

  • Wiederman SD, O'Carroll DC (2013) Selective attention in an insect visual neuron. Curr Biol 23:156–161

    CAS  PubMed  Google Scholar 

  • Wilson M, Garrard P, McGinness S (1978) The unit structure of the locust compound eye. Cell Tissue Res 195:205–226

    CAS  PubMed  Google Scholar 

  • Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312:1965–1967

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Seto ES (2014) Dopamine dynamics and signaling in Drosophila: an overview of genes, drugs and behavioral paradigms. Exp Anim 63:107–119

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to thank Mary Ansell for correction of the English and valuable comments. I also thank Drs. Sepideh Bazazi and Iain D. Couzin for kind permission to use Fig. 2d,e published in PLoS Comput Bio 8, e1002498 (2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Kral.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kral, K. Visually Guided Search Behavior during Walking in Insects with Different Habitat Utilization Strategies. J Insect Behav 32, 290–305 (2019). https://doi.org/10.1007/s10905-019-09735-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-019-09735-8

Keywords

Navigation