Skip to main content
Log in

Foraging by Drosophila melanogaster Larvae in a Patchy Environment

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

The food resources of Drosophila comprise decaying vegetable matter distributed in patches, yet foraging behavior has not been examined in larvae reared continuously in a patchy environment. Here, the extent and rate of inter-patch movement was studied in larvae of four wild strains of D. melanogaster inhabiting an experimental arena from the egg stage to the third larval instar. The hypotheses were that larvae would forage primarily in the third instar, that larvae would move from low-protein patches at higher rates than from high-protein patches, and that foraging rates would be higher on an agar substrate than on sand. Larvae hatching on a nutrient-poor food patch switched to a nutrient-rich patch during the first instar. The rate of interpatch switching increased with larval age, as did the number of larvae roving on the substrate between food patches. Inter-patch distance affected switching speed---the closer the patches, the faster the switching. High protein patches were preferred over low-protein patches, but there was a bias towards staying on the natal patch. Significant variation among strains in latency to forage, in proportion of larvae that switched patches, and in the rate of roving between patches suggests that there is natural genetic variation for these traits. Larvae switched food patches on a substrate of moist sand as quickly as on an agar substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arizmendi C, Zuleta V, Ruiz-Dubreuil G, Godoy-Herrera R (2008) Genetic analysis of foraging behavior in Drosophila funebris. Behav Genet 38:525–530

    Article  PubMed  Google Scholar 

  • Atkinson WD, Shorrocks B (1984) Aggregation of larval diptera over discrete and ephemeral breeding sites: the implications for coexistence. Am Nat 124:336–351

    Article  Google Scholar 

  • Bodenstein D (1950) The postembryonic development of Drosophila. In: Demerec M (ed) The biology of Drosophila, cold Spring Harbor laboratory press, Cold Spring Harbor, pp 275–367

  • Chess K, Ringo J (1985) Oviposition site selection by Drosophila melanogaster and Drosophila simulans. Evolution 39:869–877

    Article  PubMed  Google Scholar 

  • Cooper D (1959) Food preferences of larval and adult Drosophila. Evolution 14:41–55

    Article  Google Scholar 

  • Davidson J (1944) On the relationship between temperature and rate of development in insects at constant temperatures. J Anim Ecol 13:26–38

    Article  Google Scholar 

  • Davis J (2008) Patterns of variation in the influence of natal experience on habitat choice. Q Rev Biol 83:363–380

    Article  PubMed  Google Scholar 

  • De Belle JS, Hilliker A, Sokolowski M (1989) Genetic localization of foraging (for): a major gene for larval behavior in Drosophila melanogaster. Genetics 123:157–163

    PubMed  Google Scholar 

  • del Solar E, Palomino H (1966) Choice of oviposition in Drosophila melanogaster. Am Nat 100(911):127–133

    Article  Google Scholar 

  • Durisko Z, Dukas R (2013) Attraction to and learning from social cues in fruitfly larvae. Proc Biol Sci 280(201):31398

    Google Scholar 

  • Durisko Z, Kemp R, Mubasher R, Dukas R (2014) Dynamics of social behavior in fruit fly larvae. PLoS One 9(4):e95495

    Article  PubMed  PubMed Central  Google Scholar 

  • Dweck H, Shimaa A, Kromann S, Brown D, Hillbur Y, Sachse S, Hansson B, Stensmyr M (2013) Olfactory preference for egg laying in Citrus substrates in Drosophila. Curr Biol 23:2472–2480

    Article  CAS  PubMed  Google Scholar 

  • Flint J, Mackay T (2009) Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res 19:723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogleman JC, Starmer WT, Heed WB (1981) Larval selectivity for yeast species by Drosophila mojavensis in natural substrates. Proc Natl Acad Sci USA 78:4435–4439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godoy-Herrera R, Burnet B, Connolly K, Gogarty J (1984) The development of locomotor activity in Drosophila melanogaster larvae. Heredity 52:63–75

    Article  Google Scholar 

  • Godoy-Herrera R, Bustamante M, Campos P, Cancino JL (1997) The development of larval behaviours in sympatric Chilean populations of Drosophila melanogaster and Drosophila simulans. Behaviour 134:105–125

    Article  Google Scholar 

  • Guenther W (1964) Analysis of variance. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t tests and ANOVAs. Front Psychol 4(863)

  • Lihoreau M, Clarke IM, Buhl J, Sumpter DJ, Simpson SJ (2016) Collective selection of food patches in drosophila. J Exp Biol 219:668–675

    Article  PubMed  Google Scholar 

  • Lihoreau M, Charleston MA, Senior AM, Clissold FJ, Raubenheimer D, Simpson SJ, Buhl J (2017) Collective foraging in spatially complex nutritional environments. Philos Trans R Soc B 372:20160238

    Article  Google Scholar 

  • Lindsay SL (1958) Food preferences of Drosophila larvae. Am Nat 42:279–285

    Article  Google Scholar 

  • Markow TA, O'Grady P (2008) Reproductive ecology of Drosophila. Funct Ecol 22:747–759

    Article  Google Scholar 

  • Ringo J, Dowse H (2012) Pupation site selection in four Drosophilid species: aggregation and contact. J Insect Behav 25:578–589

    Article  Google Scholar 

  • Rodriguez L, Sokolowski M, Shore J (1992) Habitat selection by Drosophila melanogaster larvae. J Evol Biol 5:61–70

    Article  Google Scholar 

  • Rohlfs M (2005) Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors. Front Zool 2:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Dubreuil G, Burnet B, Connolly K, Furness P (1996) Larval foraging behaviour and competition in Drosophila melanogaster. Heredity 76:55–64

    Article  PubMed  Google Scholar 

  • Sang J (1949) The ecological determinants of population growth in a Drosophila culture III. Larval and pupal survival. Physiol Zool 22:183–202

    Article  CAS  PubMed  Google Scholar 

  • Schwarz S, Durisko Z, Dukas R (2014) Food selection in larval fruit flies: dynamics and effects on larval development. Naturwissenschaften 101:61–68

    Article  CAS  PubMed  Google Scholar 

  • Senior AM, Lihoreau M, Charleston MA, Buhl J, Raubenheimer D, Simpson SJ (2016) Adaptive collective foraging in groups with conflicting nutritional needs. Royal Soc Open Sci 3:150638

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Sokolowski M (1980) Foraging strategies of Drosophila melanogaster: a chromosomal analysis. Behav Genet 10:291–302

    Article  CAS  PubMed  Google Scholar 

  • Sonnenblick B (1950) The early embryology of Drosophila melanogaster. In: Demerec M (ed) The biology of Drosophila, cold Spring Harbor laboratory press, Cold Spring Harbor, pp 62–167

  • Spieth HT, Heed WB (1972) Experimental systematics and ecology of Drosophila. Annu Rev Ecol Evol Syst 3:269–288

    Article  Google Scholar 

  • Whitlock MC (2005) Combining probabilities from independent tests: The weighted Z-method is superior to Fisher’s approach. J Evol Biol 18:1368–1373

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

Thanks to Prof. Danny Segal for chemicals and for receiving fly shipments, and to Prof. Charlambylos Kyriacou for many wild strains, two of which were chosen for this study. The Canton-S strain was obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537). Tzviel Frostig helped with the preparation of figures and gave me much valuable instruction in r programming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Ringo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ringo, J. Foraging by Drosophila melanogaster Larvae in a Patchy Environment. J Insect Behav 31, 176–185 (2018). https://doi.org/10.1007/s10905-018-9661-5

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-018-9661-5

Keywords

Navigation