Journal of Insect Behavior

, Volume 31, Issue 2, pp 186–199 | Cite as

Pavement Ant Workers (Tetramorium caespitum) Assess Cues Coded in Cuticular Hydrocarbons to Recognize Conspecific and Heterospecific Non-Nestmate Ants

  • Kazuhiro Sano
  • Nathanael Bannon
  • Michael J. Greene


Most ants live in closed societies from which non-members are excluded through fighting or ritualized displays to protect colony resources. Nestmate recognition is the process by which ants discriminate nestmate from non-nestmate ants. Ants use cues coded in mixtures of long-chain hydrocarbon compounds on the cuticle as nestmate recognition cues. Pavement ants (Tetramorium caespitum) form conspicuous wars between neighboring colonies that are organized after workers meet and make the decision to fight after assessing nestmate recognition cues. These wars involve thousands of individuals. Fighting is ritualized and few ants die in the process. We identified 24 cuticular hydrocarbon compounds, above 1% in relative abundance, in the profile of pavement ants with chain lengths ranging from 15 to 31 carbon atoms. Cuticular lipids contained, in order of abundance: mono-methyl alkanes (45–56%), n-alkanes (range: 16–40% relative abundance), and alkenes (10–20%), with small or trace amounts of di-methyl, tri-methyl alkanes and fatty acids. Results from behavioral tests show that pavement ants assess information in cuticular hydrocarbon profiles to recognize both conspecific and heterospecfic (Pogonomyrmex occidentalis and Camponotus modoc) non-nestmate ants and that the relative abundance of methyl-branched alkanes and alkenes codes for nestmate status, at least for conspecific interactions. Our data add to a growing body of knowledge about how ants use cuticular hydrocarbon based nestmate recognition cues to prevent the intrusion of non-nestmates in to colony space.


Pavement ant Tetramorium caespitum nestmate recognition cues cuticular hydrocarbons aggression 



This work was supported, in part, by USDA/CSREES/NRI;UCD Project # 3533316. We thank Kevin Hoover and William Schuman for comments on the manuscript. The authors thank Claire Chen for her work identifying pavement ant cuticular hydrocarbon compounds.

Supplementary material

10905_2017_9659_MOESM1_ESM.xlsx (11 kb)
ESM 1 (XLSX 11 kb)


  1. Akino T, Yamamura K, Wakamura S, Yamaoka R (2004) Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera : Formicidae). Appl Entomol Zool 39:381–387CrossRefGoogle Scholar
  2. Astruc C, Malosse C, Errard C (2001) Lack of intraspecific aggression in the ant Tetramorium bicarinatum: A chemical hypothesis. J Chem Ecol 27:1229–1248CrossRefPubMedGoogle Scholar
  3. Bjorkman-Chiswell BT, Van Wilgenburg E, Thomas ML, Swearer SE, Elgar MA (2008) Absence of aggression but not nestmate recognition in an Australian population of the Argentine ant Linepithema humile. Insect Soc 55:207–212CrossRefGoogle Scholar
  4. Bos N, d’Ettorre P (2012) Recognition of social identity in ants. Front Psychol 3:83–93CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brandstaetter AS, Rössler W, Kleineidam CJ (2011) Friends and foes from an ant brain's point of view–neuronal correlates of colony odors in a social insect. PLoS One 6:e21383CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buback AN, Yaeger JDW, Renner KJ, Swallow JG, Greene MJ (2016) Neuromodulation of nestmate recognition decisions by pavement ants. PLoS One 11:e0166417CrossRefGoogle Scholar
  7. Buczkowski G, Kumar R, Suib SL, Silverman J (2005) Diet-related modification of cuticular hydrocarbon profiles of the Argentine ant, Linepithema humile, diminishes intercolony aggression. J Chem Ecol 31:829–843CrossRefPubMedGoogle Scholar
  8. Chen JSC, Nonacs P (2000) Nestmate recognition and intraspecific aggression based on environmental cues in Argentine ants (Hymenoptera : Formicidae). Ann Entomol Soc Am 93:1333–1337CrossRefGoogle Scholar
  9. Collignon B, Detrain C (2010) Distributed leadership and adaptive decision-making in the ant Tetramorium caespitum. Proc Roy Soc B 277:1267–1273CrossRefGoogle Scholar
  10. Crozier RH, Pamilo P. (1996) Evolution of social insects. Oxford University PressGoogle Scholar
  11. Dani FR, Jones GR, Corsi S, Beard R, Pradella D, Turillazzi S (2005) Nestmate Recognition Cues in the Honey Bee: Differential Importance of Cuticular Alkanes and Alkenes. Chem Senses 30:477–489CrossRefPubMedGoogle Scholar
  12. Esponda F, Gordon DM (2015) Distributed nestmate recognition in ants. Proc Royal Soc B.
  13. Ettershank G, Ettershank JA (1982) Ritualised fighting in the meat ant Iridomyrmex purpureus (Smith) (Hymenoptera: Formicidae). Aust J Entomol 21:97–102CrossRefGoogle Scholar
  14. Gibbs AG (1998) Water-proofing properties of cuticular lipids. Am Zool 38:471–482CrossRefGoogle Scholar
  15. Gibbs AG, Rajpurhoit G (2010) Cuticular lipids and water balance. Insect Hydrocarbons: Biology, biochemistry, and Chemical Ecology. Cambridge Press, Cambridge, pp 100–120CrossRefGoogle Scholar
  16. Greene MJ, Gordon DM (2003) Cuticular hydrocarbons inform task decisions. Nature 423:32CrossRefPubMedGoogle Scholar
  17. Greene MJ, Gordon DM (2007) Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linepithema humile and Aphaenogaster cockerelli. J Exp Biol 210:897–905CrossRefPubMedGoogle Scholar
  18. Greene MJ, Pinter-Wollman N, Gordon DM (2013) Interactions with combined chemical cues inform harvester ant foragers' decisions to leave the nest in search of food. PLoS One 8(1):e52219. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Guerrieri FJ, Nehring V, Jorgensen CG, Nielsen J, Galizia CG, d'Ettorre P (2009) Ants recognize foes and not friends. Proc R Soc Lond B Biol Sci 276:2461–2468CrossRefGoogle Scholar
  20. Hefetz A, Errard C, Chambris A, Le Negrate A (1996) Postpharyngeal gland secretion as a modifier of aggressive behavior in the myrmicinc ant Manica rubida. J Insect Behav 9:709–717CrossRefGoogle Scholar
  21. Hölldobler B (1976) Tournaments and slavery in a desert ant. Science 192:912–914CrossRefPubMedGoogle Scholar
  22. Hölldobler B (1982) Interference Strategy of Iridomyrmex pruinosum (Hymenoptera: Formicidae) during Foraging. Oecologia 52:208–213CrossRefPubMedGoogle Scholar
  23. Hoover KM, Bubak AN, Law IJ, Yeaeger JDW, Renner KJ, Swallow JG, Greene MJ (2016) The organization of societal conflicts by pavement ants Tetramorium caespitum: an agent-based model of amine mediated decision making. Current Zool 62:277–284CrossRefGoogle Scholar
  24. Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393CrossRefPubMedGoogle Scholar
  25. Ichinose K (1991) Seasonal variation in nestmate recognition in Paratrechina flavipes (Smith) worker ants (Hymenoptera: Formicidae). Anim Behav 41:1–6CrossRefGoogle Scholar
  26. Ichinose K, Lenoir A (2010) Hydrocarbons detection levels in ants. Insect Soc 57:453–455CrossRefGoogle Scholar
  27. Lahav S, Soroker V, Hefetz A (1999) Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86:246–249CrossRefGoogle Scholar
  28. Liang D, Silverman J (2000) “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87:412–416CrossRefPubMedGoogle Scholar
  29. Liang D, Blomquist GJ, Silverman J (2001) Hydrocarbon-released nestmate aggression in the Argentine ant, Linepithema humile, following encounters with insect prey. Comp Biochem Physiol B, Biochemistry & Molecular Biology 129:871–882CrossRefGoogle Scholar
  30. Lucas C, Pho DB, Jallon JM, Fresneau D (2005) Role of cuticular hydrocarbons in the chemical recognition between ant species in the Pachycondyla villosa species complex. J Insect Physiol 51:1148–1157CrossRefPubMedGoogle Scholar
  31. Martin SJ, Helanterae H, Drijfhout FP (2008) Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biol J Linn Soc 95:131–140CrossRefGoogle Scholar
  32. Martin SJ, Drijfhout FP (2009a) Nestmate and Task Cues are Influenced and Encoded Differently within Ant Cuticular hydrocarbon Profiles. J Chem Ecol 35:368–374CrossRefPubMedGoogle Scholar
  33. Martin S, Drijfhout FP (2009b) A Review of Ant Cuticular Hydrocarbons. J Chem Ecol 35:1151–1161CrossRefPubMedGoogle Scholar
  34. McGlynn TP (1999) Other ant invaders. TREE 14:489–489PubMedGoogle Scholar
  35. Menzel F, Schmitt T, Blüthgen N (2009) Intraspecific nestmate recognition in two parabiotic ant species: acquired recognition cues and low inter-colony discrimination. Insect Soc 56:251–260CrossRefGoogle Scholar
  36. Morel L, Vander Meer RK, Lavine BK (1988) Ontogeny of nestmate recognition cues in the red carpenter ant (Camponotus floridanus) – behavioral and chemical evidence for the role of age and social experience. Behav Ecol Sociobiol 22:175–183CrossRefGoogle Scholar
  37. Nelson DR, Blomquist GJ (1995) Insect Waxes. In: Hamilton RJ (ed) Waxes: Chemistry, Molecular Biology and Functions. The Oily Press, Christie, pp 1–90Google Scholar
  38. Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314CrossRefPubMedGoogle Scholar
  39. Plowes NJR (2008) Self organized conflicts in territorial ants. ProQuest, Ann ArborGoogle Scholar
  40. Roulston TH, Buczkowski G, Silverman J (2003) Nestmate discrimination in ants: effect of bioassay on aggressive behavior. Insect Soc 50:151–159CrossRefGoogle Scholar
  41. Roux O, Martin J-M, Ghomsi NT, Dejean A (2009) A non-lethal water-basd removal-reapplication technique for behavioral analysis of cuticular compounds of ants. J Chem Ecol 35:904–912CrossRefPubMedGoogle Scholar
  42. Scharf ME, Ratliff CR, Bennett GW (2004) Impacts of residual insecticide barriers on perimeter-invading ants, with particular reference to the odorous house ant, Tapinoma sessile. J Econ Entomol 97:601–605CrossRefPubMedGoogle Scholar
  43. Sharma KR, Enzmann BL, Schmidt Y, Moore D, Jones GR, Parker J, Berger SL, Reinberg D, Zwiebel LJ, Breit B, Liebig J, Ray A (2015) Cuticular Hydrocarbon Pheromones for Social Behavior and Their Coding in the Ant Antenna. Cell Rep 12:1261–1271CrossRefPubMedGoogle Scholar
  44. Steiner FM, Schlick-Steiner BC, Buschinger A (2003) First record of unicolonial polygyny in Tetramorium cf. caespitum (Hymenoptera, Formicidae). Insect Soc 50:98–99CrossRefGoogle Scholar
  45. Sturgis S, Gordon DM (2012) Nestmate recognition in ants (Hymenoptera, Formicidae): A review. Myrmecol News 16:101–110Google Scholar
  46. Torres CW, Brandt M, Tsutsui ND (2007) The role of cuticular hydrocarbons as chemical cues for nestmate recognition in the invasive Argentine ant (Linepithema humile). Insect Soc 54:363–373CrossRefGoogle Scholar
  47. Vander Meer RK, Morel L (1998) Nest-mate recognition in ants. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone Communication in Social Insects: Ants. Bees and TermitesWestview Press, Boulder, Wasps, pp 79–103Google Scholar
  48. van Wilgenburg E, van Lieshout E, Elgar M (2005) Conflict resolution strategies in meat ants (Iridomyrmex purpureus): ritualised displays versus lethal fighting. Behaviour 142:701–716CrossRefGoogle Scholar
  49. van Wilgenburg EV, Torres CW, Tsutsui ND (2010) The global expansion of a single ant supercolony. Evol Appl 3:136–143CrossRefPubMedPubMedCentralGoogle Scholar
  50. van Zweden JS, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. Insect hydrocarbons: Biology, Biochemistry and Chemical Ecology 11. Cambridge Press, Cambridge, pp 222–243CrossRefGoogle Scholar
  51. Wagner D, Tissot M, Cuevas W, Gordon DM (2000) Harvester ants utilize cuticular hydrocarbons in nestmate recognition. J Chem Ecol 26:2245–2257CrossRefGoogle Scholar
  52. Whitehouse MEA, Jaffe K (1995) Nestmate recognition in the leaf-cutting ant Atta laevigata. Insect Soc 42:157–166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kazuhiro Sano
    • 1
    • 2
  • Nathanael Bannon
    • 1
  • Michael J. Greene
    • 1
  1. 1.Department of Integrative BiologyUniversity of Colorado DenverDenverUSA
  2. 2.Center for Environmental Health SciencesNational Institute for Environmental StudiesTsukubaJapan

Personalised recommendations