Journal of Insect Behavior

, Volume 29, Issue 2, pp 199–213 | Cite as

Use of Radio Telemetry for Studying Flight Movements of Paysandisia archon (Lepidoptera: Castniidae)

  • Maud Liégeois
  • Philippe Tixier
  • Laurence Beaudoin-Ollivier


The moth Paysandisia archon is an invasive species that infests palm trees in the Mediterranean Basin. The immature stages occur exclusively inside the palm crown, whereas adults fly to mate and locate a new host plant. Here, we describe the use of small radio transmitters (0.27 g) for tracing the movements of P. archon adults. We report the first successful use of radio telemetry to track flight distances and space use of a flying moth. Our study was carried out using 11 tagged moths released on the Maguelone Peninsula in southern France. Although the males were successfully tracked within a restricted area, estimated at 4 ha, most of the tagged females immediately flew distances over 500 m, disappearing beyond the maximum detection range of the 30 ha study area. Flights for mating, resting and, likely, oviposition covered distances of 11.6 m to 224 m in males and 16.8 m to >500 m in females. We found evidence that both sexes are active during the warmer temperatures of the day. In contrast, the moths were inactive when the relative humidity was high. Moreover, the P. archon moths do not seem to reside on the host palm trees. Our data show a high mobility of females, which may be responsible for the spread of the first recorded Castniidae in France by laying eggs far from the palm trees where they emerged.


Radio telemetry Paysandisia archon Lepidoptera flight activity dispersal distance behavior 



This work was conducted under the Palm Protect project, “Eradication and containment strategies and tools for the implantation of European Union legislation against the red palm weevil Rhynchophorus ferrugineus Olivier and Paysandisia archon Burmeister” under KBBE.2011.1.2-12 Seventh Framework program financed by the European Union (Grant agreement no. 289566). We wish to thank N. Audsley, Palm Protect project manager and the management board of the project for the permission to submit this paper. We are also grateful to M. Bailly, President of Compagnons de Maguelone, V. Medina, Director of the Domaine de Maguelone, and all of the association’s team for authorizing this survey on the Maguelone peninsula. We thank F. Dedieu for technical assistance. Thanks to C. Cilas and the two anonymous reviewers for valuable and helpful comments on the manuscript.


  1. Aguilar L, Miller J-Y, Sarto i Monteys V (2001) A new lepidopteran family for the European fauna. SHILAP Rev Lepidopterol Madr 29:86–87Google Scholar
  2. André N, Tixier-Malicorne P (2013) Le papillon palmivore en Languedoc-Roussillon: son impact, ses conséquences et les plans d’action envisagés. AFPP Colloq. Méditerranéen Sur Ravag. Palmiers, Nice, 13pGoogle Scholar
  3. Bates D, Maechler M, Bolker B (2012) lme4: Linear mixed-effects models using S4 classesGoogle Scholar
  4. Beaudoin-Ollivier L, Bonaccorso F, Aloysius M, Kasiki M (2003) Flight movement of Scapanes australis australis (Boisduval) (Coleoptera: Scarabaeidae: Dynastinae) in Papua New Guinea: a radiotelemetry study. Aust J Entomol 42:367–372CrossRefGoogle Scholar
  5. Bolker BM, Brooks ME, Clark CJ, et al. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135CrossRefPubMedGoogle Scholar
  6. Cant ET, Smith AD, Reynolds DR, Osborne JL (2005) Tracking butterfly flight paths across the landscape with harmonic radar. Proc R Soc B Biol Sci 272:785–790CrossRefGoogle Scholar
  7. Cochran WW, Lord RD (1963) A radio-tracking system for wild animals. J Wildl Manag 27:9–24CrossRefGoogle Scholar
  8. Delle-Vedove R, Beaudoin-Ollivier L, Hossaert-Mckey M, Frerot B (2012) Reproductive biology of the palm borer, Paysandisia archon (Lepidoptera: Castniidae). Eur J Entomol 109:289–292CrossRefGoogle Scholar
  9. Delle-Vedove R, Frerot B, Hossaert-McKey M, Beaudoin-Ollivier L (2014) Courtship behavior of the Castniid palm borer, Paysandisia archon: potential roles of male scents and visual cues in a day-flying moth. J Insect Sci 14:1–14CrossRefGoogle Scholar
  10. Drescher J, Jaubert R (2003) Paysandisia archon continue sa progression. PHM Rev Hortic 49:49–51Google Scholar
  11. Englund R (1993) Movement patterns of Cetonia beetles (Scarabaeidae) among flowering Viburnum opulus (Caprifoliaceae). Oecologia 94:295–302CrossRefGoogle Scholar
  12. Fornoff F, Dechmann DKN, Wikelski M (2012) Observation of movement and activity via radio-telemetry reveals diurnal behavior of the neotropical katydid Philophyllia Ingens (Orthoptera: Tettigoniidae). Ecotropica 18:27–34Google Scholar
  13. Frérot B, Delle-Vedove R, Beaudoin-Ollivier L, et al. (2013) Fragrant legs in Paysandisia archon males (Lepidoptera, Castniidae). Chemoecology 23:137–142CrossRefGoogle Scholar
  14. Gherardi F, Vannini M (1989) Spatial behaviour of the freshwater crab, Potamon fluviatile: a radio-telemetric study. Biol Behav 14:28–45Google Scholar
  15. Gold CS, Rukazambuga NDTM, Karamura EB, et al (1999) Recent advances in banana weevil biology, population dynamics and pest status with emphasis on East Africa. In: Mobilizing IPM for sustainable banana production in Africa. Proc. Workshop Banana IPM Held Nelspruit South Afr. 23–28 Novemb. 1998. INIBAP, Montpellier, France, pp 35–50Google Scholar
  16. Hagen M, Wikelski M, Kissling WD (2011) Space use of bumblebees (Bombus spp.) revealed by radio-tracking. PLoS ONE 6:e19997. doi: 10.1371/journal.pone.0019997 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hardersen S (2007) Telemetry of Anisoptera after emergence - first results (Odonata). Int J Odonatol 10:189–202CrossRefGoogle Scholar
  18. Hedin J, Ranius T (2002) Using radio telemetry to study dispersal of the beetle Osmoderma eremita, an inhabitant of tree hollows. Comput Electron Agric 35:171–180CrossRefGoogle Scholar
  19. Hedin J, Ranius T, Nilsson SG, Smith HG (2008) Restricted dispersal in a flying beetle assessed by telemetry. Biodivers Conserv 17:675–684CrossRefGoogle Scholar
  20. Janowski-Bell ME, Horner NV (1999) Movement of the male brown tarantula, Aphonopelma hentzi (Araneae, Theraphosidae), using radio telemetry. J Arachnol 27:503–512Google Scholar
  21. Kissling WD, Pattemore DE, Hagen M (2014) Challenges and prospects in the telemetry of insects. Biol Rev 89:511–530CrossRefGoogle Scholar
  22. Lara EF (1964) The banana stalk borer Castniomera humboldti (Boisduval) in La Estrella Valley, Costa Rica I Morphology. Turrialba 14:128–135Google Scholar
  23. Levett S, Walls S (2011) Tracking the elusive life of the emperor dragonfly Anax imperator leach. J Br Dragonfly Soc 27:59–68Google Scholar
  24. Mader HJ, Schell C, Kornacker P (1990) Linear barriers to arthropod movements in the landscape. Biol Conserv 54:209–222CrossRefGoogle Scholar
  25. Mascanzoni D, Wallin H (1986) The harmonic radar: a new method of tracing insects in the field. Ecol Entomol 11:387–390CrossRefGoogle Scholar
  26. Mech LD (1983) A handbook of animal radio-tracking. University Of Minnesota Press, MinneapolisGoogle Scholar
  27. Mech LD, Barber SM (2002) A critique of wildlife radio-tracking and its use in national parks. Rep US Natl Park Serv 19–20Google Scholar
  28. Miller JY (1986) The taxonomy, phylogeny, and zoogeography of the neotropical moth subfamily Castniinae (Lepidoptera: Castnioidea: Castniidae)/. Thesis PhD-Univ Fla. pp 545–569Google Scholar
  29. Naef-Daenzer B, Früh D, Stalder M, et al. (2005) Miniaturization (0.2 g) and evaluation of attachment techniques of telemetry transmitters. J Exp Biol 208:4063–4068CrossRefPubMedGoogle Scholar
  30. Pasquet R, Peltier A, Hufford MB, et al. (2008) Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc Natl Acad Sci U S A 105(36):13456–13461Google Scholar
  31. Priede IG, Swift SM (1992) Wildlife telemetry: remote monitoring and tracking of animals. Rev Fish Biol Fish 4:265–266Google Scholar
  32. Ranius T (2006) Measuring the dispersal of saproxylic insects: a key characteristic for their conservation. Popul Ecol 48:177–188CrossRefGoogle Scholar
  33. Ranius T, Hedin J (2001) The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126:363–370CrossRefGoogle Scholar
  34. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  35. Riecken U, Raths U (1996) Use of radio telemetry for studying dispersal and habitat use of Carabus coriaceus L. Ann Zool Fenn 33:109–116Google Scholar
  36. Riley JR, Smith AD (2002) Design considerations for an harmonic radar to investigate the flight of insects at low altitude. Comput Electron Agric 35:151–169CrossRefGoogle Scholar
  37. Riley JR, Smith AD, Reynolds DR, et al. (1996) Tracking bees with harmonic radar. Nature 379:29–30CrossRefGoogle Scholar
  38. Rink M, Sinsch U (2007) Radio-telemetric monitoring of dispersing stag beetles: implications for conservation. J Zool 272:235–243CrossRefGoogle Scholar
  39. Romero F (1998) Comportamiento, oviposición y distribución de Duboisvalia simulans (Boisduval) en Venezuela (Lepidoptera: Castniidae). Bol Ent Venez NS 13:91–92Google Scholar
  40. Salt G (1929) Castniomera humboldti (Boisduval), a Pest of bananas. Bull Entomol Res 20:187–193CrossRefGoogle Scholar
  41. Sarto i Monteys V (2013) Paysandisia archon (Castniidae): description, biological cycle, behaviour, host plants, symptoms and damages. Association Française de Protection des Plantes (AFPP), Nice, 18pGoogle Scholar
  42. Sarto i Monteys V, Aguilar L (2005) The Castniid palm borer, Paysandisia archon (Burmeister, 1880), in Europe: comparative biology, pest status and possible control methods (Lepidoptera: Castniidae). Narchr Entomol Ver Apollo 26:61–94Google Scholar
  43. Sarto i Monteys V, Acín P, Rosell G, et al. (2012) Moths behaving like butterflies. Evolutionary loss of long range attractant pheromones in Castniid moths: a Paysandisia archon model. PLoS One 7:e29282. doi: 10.1371/journal.pone.0029282 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Schneider CW, Tautz J, Grünewald B, Fuchs S (2012) RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7:e30023. doi: 10.1371/journal.pone.0030023 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Silcox DE, Doskocil JP, Sorenson CE, Brandenburg RL (2011) Radio frequency identification tagging: a novel approach to monitoring surface and subterranean insects. Am Entomol 57:86–93CrossRefGoogle Scholar
  46. Sprecher-Uebersax E, Durrer H (2001) Verhaltensstudien beim Hirschkäfer mittels Telemetrie und Videoaufzeichnungen (Coleoptera, Lucanus cervus L.). Mitteilungen Naturforschenden Gesellschaften Beider Basel 5:161–182Google Scholar
  47. Venables WN, Ripley BD (2002) Modern applied statistics with S. Statistics and Computing. Springer-Verlag, New York, 495pGoogle Scholar
  48. Vinatier F, Chailleux A, Duyck P-F, et al. (2010) Radiotelemetry unravels movements of a walking insect species in heterogeneous environments. Anim Behav 80:221–229CrossRefGoogle Scholar
  49. Wikelski M, Moskowitz D, Adelman JS, et al. (2006) Simple rules guide dragonfly migration. Biol Lett 2:325–329CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wikelski M, Moxley J, Eaton-Mordas A, et al. (2010) Large-range movements of Neotropical orchid bees observed via radio telemetry. PLoS One 5:e10738. doi: 10.1371/journal.pone.0010738 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zuur AF, Leno EN, Walker NJ, et al. (2009) Mixed effects models and extensions in ecology with R, Statistics for Biology and Health, 1st edn. Springer-Verlag, New York, p. 574CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Maud Liégeois
    • 1
  • Philippe Tixier
    • 2
  • Laurence Beaudoin-Ollivier
    • 1
  1. 1.Cirad, Bios, UPR 106 BioagresseursMontpellier cedex 5France
  2. 2.Cirad, Persyst, UPR 26 GecoMontpellier cedex 5France

Personalised recommendations