Advertisement

Journal of Insect Behavior

, Volume 29, Issue 2, pp 172–189 | Cite as

Thermal Preference of the Bush Cricket Isophya rizeensis; Testing the Effect of Countergradient Selection

  • Arda Cem Kuyucu
  • Selim Sualp Çağlar
Article

Abstract

Thermal preference is one of the most crucial components of behavioral thermoregulation in ectotherms, and documenting the adaptation of thermal preference carries great importance for studying the evolution of thermal biology. However there are not many studies focusing on the adaptation of thermal preference in elevational and latitudinal gradients. Isophya rizeensis is a color polymorphic bush cricket species endemic to the mountainous region of northeastern Turkey. Populations of this species are distributed in a wide elevational range between 350 and 2300 m. In this study, we hypothesized that the thermal preference of Isophya rizeensis might follow a countergradient variation where crickets from higher altitudes have higher temperature preferences compared to crickets from lower altitudes. To test this hypothesis, thermal preference values (T pref ) of crickets from three altitudes groups (low, middle and high) were measured with a thermal gradient experiment. Additionally, body temperatures (T b ) and environmental temperatures (T a ) were measured in field. Deviation values of T b and T a from T pref were calculated to investigate the extent of thermoregulation. As Isophya rizeensis is color polymorphic species where morphology pattern changes from lighter to darker types with increasing altitude we also tested whether coloration has any effect on temperature excess (T ex ) and thermoregulation. Thermal preference values did not differ significantly between three groups and also colouration does not influence the extent of thermoregulation in this species. These results indicate that there is not sufficient evidence for the existence of a countergradient selection related with thermal behavior. However, the deviation of body (D b ) and environmental (D a ) temperatures suggest that at higher altitudes thermoregulation might be more efficient than lower altitudes.

Keywords

Countergradient selection thermoregulation thermal adaptation thermal behavior color polymorphism 

Notes

Acknowledgments

We thank Dr. Ismail Kudret Saglam, Dr. Cagasan Karacaoğlu and Duygu P. Oksuz for their great help in field.

References

  1. Ahnesjö J, Forsman A (2006) Differential habitat selection by pygmy grasshopper color morphs; interactive effects of temperature and predator avoidance. Evol Ecol 20(3):235–257CrossRefGoogle Scholar
  2. Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, USACrossRefGoogle Scholar
  3. Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27(4):249–268CrossRefGoogle Scholar
  4. Angilletta MJ, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44(6):498–509PubMedCrossRefGoogle Scholar
  5. Arendt JD (2011) Size-fecundity relationships, growth trajectories, and the temperature-size rule for ectotherms. Evolution 65(1):43–51PubMedCrossRefGoogle Scholar
  6. Arendt JD, Wilson DS (1999) Countergradient selection for rapid growth in pumpkinseed sunfish: disentangling ecological and evolutionary effects. Ecology 80(8):2793–2798CrossRefGoogle Scholar
  7. Atkinson D, Sibly RM (1997) Why are organisms usually bigger in colder environments? making sense of a life history puzzle. Trends Ecol Evol 12(6):235–239PubMedCrossRefGoogle Scholar
  8. Bailey W, Withers P, Endersby M, Gaull K (1993) The energetic costs of calling in the bushcricket Requena verticalis (orthoptera: tettigoniidae: listroscelidinae). J Exp Biol 178(1):21–37Google Scholar
  9. Bartholomew GA, Heinrich B (1978) Endothermy in African dung beetles during flight, ball making, and ball rolling. J Exp Biol 73(1):65–83Google Scholar
  10. Berger D, Walters R, Gotthard K (2008) What limits insect fecundity? body size and temperature-dependent egg maturation and oviposition in a butterfly. Funct Ecol 22(3):523–529CrossRefGoogle Scholar
  11. Berner D, Körner C, Blanckenhorn WU (2004) Grasshopper populations across 2000 m of altitude: is there life history adaptation? Ecography 27(6):733–740CrossRefGoogle Scholar
  12. Berven KA, Gill DE, Smith-Gill SJ (1979) Countergradient selection in the green frog, Rana clamitans. Evolution 33(2):609–623CrossRefGoogle Scholar
  13. Bittner TD, King RB, Kerfin JM (2002) Effects of body size and melanism on the thermal biology of garter snakes (Thamnophis sirtalis). Copeia 2002(2):477–482CrossRefGoogle Scholar
  14. Blanckenhorn WU, Hellriegel B (2002) Against Bergmann’s rule: fly sperm size increases with temperature. Ecol Lett 5(1):7–10CrossRefGoogle Scholar
  15. Bonebrake TC, Boggs CL, Stamberger JA, Deutsch CA, Ehrlich PR (2014) From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts. Proc R Soc Biol Sci Ser B 281(1793)Google Scholar
  16. Brakefield P, Willmer P (1985) The basis of thermal melanism in the ladybird Adalia bipunctata: differences in reflectance and thermal properties between the morphs. Heredity 54(1):9–14CrossRefGoogle Scholar
  17. Buse A, Hadley D, Sparks T (2001) Arthropod distribution on an alpine elevational gradient: the relationship with preferred temperature and cold tolerance. Eur J Entomol 98:301–309CrossRefGoogle Scholar
  18. Çağlar SS, Karacaoğlu Ç, Kuyucu AC, Sağlam İK (2014) Humidity and seasonality drives body size patterns in males of the bush cricket Isophya rizeensis sevgili, 2003 (orthoptera: tettigoniidae: phaneropterinae). Insect Sci 21(2):213–226PubMedCrossRefGoogle Scholar
  19. Carruthers RI, Larkin TS, Firstencel H, Feng Z (1992) Influence of thermal ecology on the mycosis of a rangeland grasshopper. Ecology 73(1):190–204CrossRefGoogle Scholar
  20. Chapple D, Hutchinson M, Maryan B, Plivelich M, Moore J, Keogh J (2008) Evolution and maintenance of colorpattern polymorphism in Liopholis (Squamata: Scincidae). Aust J Zool 56:103–115CrossRefGoogle Scholar
  21. Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev (Camb) 85(1):139–169CrossRefGoogle Scholar
  22. Civantos E, Ahnesjo J, Forsman A, Martin J, Lopez P (2004) Indirect effects of prey coloration on predation risk: pygmy grasshoppers versus lizards. Evol Ecol Res 6(2):201–213Google Scholar
  23. Clusella Trullas S, Terblanche J, van Wyk J, Spotila J (2007a) Low repeatability of preferred body temperature in four species of cordylid lizards: temporal variation and implications for adaptive significance. Evol Ecol 21(1):63–79CrossRefGoogle Scholar
  24. Clusella Trullas S, van Wyk JH, Spotila JR (2007b) Thermal melanism in ectotherms. J Therm Biol 32(5):235–245CrossRefGoogle Scholar
  25. Clusella-Trullas S, Terblanche JS, Blackburn TM, Chown SL (2008) Testing the thermal melanism hypothesis: a macrophysiological approach. Funct Ecol 22:232–238CrossRefGoogle Scholar
  26. Conover DO, Schultz ET (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol Evol 10(6):248–252PubMedCrossRefGoogle Scholar
  27. Coutant C (1987) Thermal preference: when does an asset become a liability? Environ Biol Fish 18(3):161–172CrossRefGoogle Scholar
  28. De Jong P, Gussekloo S, Brakefield P (1996) Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata) under controlled conditions. J Exp Biol 199(12):2655–2666PubMedGoogle Scholar
  29. Digby PSB (1955) Factors affecting the temperature excess of insects in sunshine. J Exp Biol 32(2):279Google Scholar
  30. Dillon ME, Frazier MR, Dudley R (2006) Into thin air: physiology and evolution of alpine insects. Integr Comp Biol 46(1):49–61PubMedCrossRefGoogle Scholar
  31. Dillon ME, Wang G, Garrity PA, Huey RB (2009) Thermal preference in Drosophila. J Therm Biol 34(3):109–119PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Chang Biol 17(2):990–996CrossRefGoogle Scholar
  33. Douglas MM, Grula JW (1978) Thermoregulatory adaptations allowing ecological range expansion by the pierid butterfly, Nathalis iole boisduval. Evolution 32(4):776–783CrossRefGoogle Scholar
  34. Dubois Y, Blouin-Demers G, Shipley B, Thomas D (2009) Thermoregulation and habitat selection in wood turtles Glyptemys insculpta: chasing the sun slowly. J Anim Ecol 78(5):1023–1032PubMedCrossRefGoogle Scholar
  35. Eweleit L, Reinhold K (2014) Body size and elevation: do Bergmann's and Rensch's rule apply in the polytypic bushcricket Poecilimon veluchianus? Ecol Entomol 39(1):133–136CrossRefGoogle Scholar
  36. Fangue NA, Podrabsky JE, Crawshaw LI, Schulte PM (2009) Countergradient variation in temperature preference in populations of killifish Fundulus heteroclitus. Physiol Biochem Zool 82(6):776–786PubMedCrossRefGoogle Scholar
  37. Fedorka K, Lee V, Winterhalter W (2013) Thermal environment shapes cuticle melanism and melanin-based immunity in the ground cricket Allonemobius socius. Evol Ecol 27(3):521–531CrossRefGoogle Scholar
  38. Forsman A (1997) Thermal capacity of different colormorphs in the pygmy grasshopper Tetrix subulata. Ann Zool Fenn 34(3):145–149Google Scholar
  39. Forsman A (2000) Some like it hot: intra-population variation in behavioral thermoregulation in color-polymorphic pygmy grasshoppers. Evol Ecol 14(1):25–38CrossRefGoogle Scholar
  40. Forsman A (2001) Clutch size versus clutch interval: life history strategies in the colour-polymorphic pygmy grasshopper Tetrix subulata. Oecologia 129(3):357–366CrossRefGoogle Scholar
  41. Freidenburg LK, Skelly DK (2004) Microgeographical variation in thermal preference by an amphibian. Ecol Lett 7(5):369–373CrossRefGoogle Scholar
  42. Gates DM (2003) Biophysical ecology. Dover Publications, New YorkGoogle Scholar
  43. Gilchrist GW (1995) Specialists and generalists in changing environments. I fitness landscapes of thermal sensitivity. Am Nat 146(2):252–270CrossRefGoogle Scholar
  44. Goller M, Goller F, French SS (2014) A heterogeneous thermal environment enables remarkable behavioral thermoregulation in Uta stansburiana. Ecol Evol 4(17):3319–3329PubMedPubMedCentralCrossRefGoogle Scholar
  45. Grodzicki P, Caputa M (2014) Diurnal and seasonal changes in thermal preference of single, isolated bees and small groups of bees (Apis mellifera L.). J Insect Behav 27(6):701–711CrossRefGoogle Scholar
  46. Gwynne DT (1988) Courtship feeding and the fitness of female katydids (orthoptera: tettigoniidae). Evolution 42(3):545–555CrossRefGoogle Scholar
  47. Gwynne DT (1990) Testing parental investment and the control of sexual selection in katydids: the operational sex ratio. Am Nat 136(4):474–484CrossRefGoogle Scholar
  48. Gwynne DT (2001) Katydids and bush-crickets: reproductive behavior and evolution of the tettigoniidae. Cornell University Press, IthacaGoogle Scholar
  49. Harris RM, McQuillan P, Hughes L (2013) A test of the thermal melanism hypothesis in the wingless grasshopper Phaulacridium vittatum. J Insect Sci 13:51PubMedPubMedCentralCrossRefGoogle Scholar
  50. Harris RMB, McQuillan P, Hughes L (2015) The effectiveness of common thermo-regulatory behaviours in a cool temperate grasshopper. J Therm Biol 52:75–83PubMedCrossRefGoogle Scholar
  51. Hartley JC, Bugren MM (1986) Color polymorphism in Ephippiger ephippiger (Orthoptera, Tettigoniidae). Biol J Linn Soc 27(2):191–199CrossRefGoogle Scholar
  52. Haslett JR (1997) Insect communities and the spatial complexity of mountain habitats. Glob Ecol Biogeogr Lett 6(1):49–56CrossRefGoogle Scholar
  53. Hawley DM, DuRant SE, Wilson AF, Adelman JS, Hopkins WA (2012) Additive metabolic costs of thermoregulation and pathogen infection. Funct Ecol 26(3):701–710CrossRefGoogle Scholar
  54. Hegna RH, Nokelainen O, Hegna JR, Mappes J (2013) To quiver or to shiver: increased melanization benefits thermoregulation, but reduces warning signal efficacy in the wood tiger moth. Proc R Soc Biol Sci Ser B 280(1755)Google Scholar
  55. Hertz PE, Huey RB, Stevenson RD (1993) Evaluating temperature regulation by field-active ectotherms: the fallacy of the ınappropriate question. Am Nat 142(5):796–818PubMedCrossRefGoogle Scholar
  56. Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80(03):489–513PubMedCrossRefGoogle Scholar
  57. Huey RB (1982). Temperature, physiology, and the ecology of reptiles. Biol Reptil, CiteseerGoogle Scholar
  58. Huey RB, Berrigan D (2001) Temperature, demography, and ectotherm fitness. Am Nat 158(2):204–210PubMedCrossRefGoogle Scholar
  59. Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4(5):131–135PubMedCrossRefGoogle Scholar
  60. Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19(1):357–366CrossRefGoogle Scholar
  61. Hutchinson G (1957). The multivariate niche. Cold Spr Harb Symp Quant BiolGoogle Scholar
  62. Hutchinson GE (1978) An introduction to population ecology. Yale University Press, New HavenGoogle Scholar
  63. Johnson J, Kelsch S (1998) Effects of evolutionary thermal environment on temperature-preference relationships in fishes. Environ Biol Fish 53(4):447–458CrossRefGoogle Scholar
  64. Karacaoglu C (2013) Ecological niche modelling of Isophya rizeensis (Orthoptera:Tettigoniidae). Biology Department. Ankara, Hacettepe University. PhD Thesis, 133 ppGoogle Scholar
  65. Kearney M, Porter WP (2004) Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85(11):3119–3131CrossRefGoogle Scholar
  66. Kearney M, Predavec M (2000) Do nocturnal ectotherms thermoregulate? A study of the temperate gecko Christinus marmoratus. Ecology 81(11):2984–2996CrossRefGoogle Scholar
  67. Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc Natl Acad Sci U S A 106(10):3835–3840PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kingsolver J, Huey R (2008) Size, temperature, and fitness: three rules. Evol Ecol Res 10(2):251–268Google Scholar
  69. Kingsolver JG, Watt WB (1983) Thermoregulatory strategies in Colias butterflies: thermal stress and the limits to adaptation in temporally varying environments. Am Nat 121(1):32–55CrossRefGoogle Scholar
  70. Lactin DJ, Johnson DL (1997) Response of body temperature to solar radiation in restrained nymphal migratory grasshoppers (Orthoptera: Acrididae): influences of orientation and body size. Physiol Entomol 22(2):131–139CrossRefGoogle Scholar
  71. Lactin DJ, Johnson DL (1998) Convective heat loss and change in body temperature of grasshopper and locust nymphs: relative importance of wind speed, insect size and insect orientation. J Therm Biol 23(1):5–13CrossRefGoogle Scholar
  72. Lehmann GUC, Lehmann AW (2008) Variation in body size among populations of the bushcricket Poecilimon thessalicus (Orthoptera: Phaneropteridae): an ecological adaptation? J Orthop Res 17(2):165–169CrossRefGoogle Scholar
  73. Lindstedt C, Lindström L, Mappes J (2009) Thermoregulation constrains effective warning signal expression. Evolution 63(2):469–478PubMedCrossRefGoogle Scholar
  74. Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah LEE (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol 20(2):538–548PubMedCrossRefGoogle Scholar
  75. Marcil J, Swain DP, Hutchings JA (2006) Countergradient variation in body shape between two populations of Atlantic cod (Gadus morhua). Proc R Soc Biol Sci Ser B 273(1583):217–223CrossRefGoogle Scholar
  76. Martin SD, Gray DA, Cade WH (2000) Fine-scale temperature effects on cricket calling song. Can J Zool 78(5):706–712CrossRefGoogle Scholar
  77. May ML (1979) Insect thermoregulation. Annu Rev Entomol 24(1):313–349CrossRefGoogle Scholar
  78. McClure M, Cannell E, Despland E (2011) Thermal ecology and behaviour of the nomadic social forager Malacosoma disstria. Physiol Entomol 36(2):120–127CrossRefGoogle Scholar
  79. Moore AJ (1990) The evolution of sexual dimorphism by sexual selection: the separate effects of intrasexual selection and intersexual selection. Evolution 44(2):315–331CrossRefGoogle Scholar
  80. Neill KM, Streett D, Neill RP (1994) Scavenging behavior of grasshoppers (orthoptera: acrididae): feeding and thermal responses to newly available resources. Environ Entomol 23(5):1260–1268CrossRefGoogle Scholar
  81. Nice C, Fordyce J (2006) How caterpillars avoid overheating: behavioral and phenotypic plasticity of pipevine swallowtail larvae. Oecologia 146(4):541–548PubMedCrossRefGoogle Scholar
  82. Ouedraogo RM, Goettel M, Brodeur J (2004) Behavioral thermoregulation in the migratory locust: a therapy to overcome fungal infection. Oecologia 138(2):312–319PubMedCrossRefGoogle Scholar
  83. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37(1):637–669CrossRefGoogle Scholar
  84. Petruzzi EE, Niewiarowski PH, Moore FB (2006) The role of thermal niche selection in maintenance of a colorpolymorphism in redback salamanders (Plethodon cinereus). Front Zool 3:10PubMedPubMedCentralCrossRefGoogle Scholar
  85. Punzalan D, Rodd FH, Rowe L (2008) Sexual selection mediated by the thermoregulatory effects of male colorpattern in the ambush bug Phymata americana. Proc R Soc Biol Sci Ser B 275(1634):483–492CrossRefGoogle Scholar
  86. Ruiz-Aravena M, Gonzalez-Mendez A, Estay SA, Gaitán-Espitia JD, Barria-Oyarzo I, Bartheld JL, Bacigalupe LD (2014) Impact of global warming at the range margins: phenotypic plasticity and behavioral thermoregulation will buffer an endemic amphibian. Ecol Evol 4(23):4467–4475PubMedPubMedCentralCrossRefGoogle Scholar
  87. Saglam IK (2004) Research on the altitude dependent, ecological distribution and colorpolymorphism of the bush-cricket Isophya rizeensis Sevgili, 2004 (Orthoptera: Tettigonoiidae) biology. Hacettepe University. Msc. thesis, Ankara 123 ppGoogle Scholar
  88. Saglam IK, Caglar SS (2005) Distribution and habitat characteristics of the color polymorphic bush-cricket Isophya rizeensis Sevgili (Orthoptera: Tettigoniidae: Phaneropterinae) in Turkey. Entomol News 116(5):309–324Google Scholar
  89. Saglam IK, Caglar SS (2007) Local population size and dynamics of the color polymorphic bush cricket, Isophya rizeensis Sevgili, 2003 (Orthoptera: Tettigoniidae) within the Firtina Valley. Turk J Zool 31:1–8Google Scholar
  90. Sakaluk SK, Eggert A-K (2009) Coping with the cold: temperature and mating activity of male sagebrush crickets Cyphoderris strepitans (Orthoptera: Haglidae). Physiol Entomol 34(3):251–255CrossRefGoogle Scholar
  91. Samietz J, Salser MA, Dingle H (2005) Altitudinal variation in behavioural thermoregulation: local adaptation vs. plasticity in California grasshoppers. J Evol Biol 18(4):1087–1096PubMedCrossRefGoogle Scholar
  92. Sanborn AF (2004) Thermoregulation and endothermy in the large western cicada Tibicen cultriformis (Hemiptera: Cicadidae). J Therm Biol 29(2):97–101CrossRefGoogle Scholar
  93. Sandre S-L, Tammaru T, Vanatoa A, Esperk T (2007) Maintenance of larval color polymorphism in Orgyia antiqua (Lepidoptera: Lymantriidae): Evaluating the role of thermal adaptation. Environ Entomol 36(6):1303–1309PubMedCrossRefGoogle Scholar
  94. Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL (2004) Effects of body size and temperature on population growth. Am Nat 163(3):429–441PubMedCrossRefGoogle Scholar
  95. Schul J (1998) Song recognition by temporal cues in a group of closely related bushcricket species (genus Tettigonia). J Comp Physiol A Sens Neural Behav Physiol 183(3):401–410CrossRefGoogle Scholar
  96. Sevgili H (2003) A new species of bushcricket (Orthoptera: Tettigoniidae) of the palaearctic genus Isophya (Phaneropterinae) from Turkey. Entomol News 114(3):129–137Google Scholar
  97. Springate S, Thomas MB (2005) Thermal biology of the meadow grasshopper, Chorthippus parallelus, and the implications for resistance to disease. Ecol Entomol 30(6):724–732CrossRefGoogle Scholar
  98. Strathdee AT, Bale JS (1998) Life on the edge: insect ecology in arctic environments. Annu Rev Entomol 43(1):85–106PubMedCrossRefGoogle Scholar
  99. Tanaka K (2009) Some like it cool? Intermorph comparison of preferred body temperature in a colour-dimorphic snake. Anim Biol 59(1):31–39CrossRefGoogle Scholar
  100. True JR (2003) Insect melanism: the molecules matter. Trends Ecol Evol 18(12):640–647CrossRefGoogle Scholar
  101. Van der Have TM, De Jong G (1996) Adult size in ectotherms: temperature effects on growth and differentiation. J Theor Biol 183(3):329–340CrossRefGoogle Scholar
  102. Vannote RL, Sweeney BW (1980) Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am Nat 115(5):667–695CrossRefGoogle Scholar
  103. Verdú JR, Arellano L, Numa C (2006) Thermoregulation in endothermic dung beetles (Coleoptera: Scarabaeidae): effect of body size and ecophysiological constraints in flight. J Insect Physiol 52(8):854–860PubMedCrossRefGoogle Scholar
  104. Walker T (1975) Effects of temperature on rates in poikilotherm nervous systems: evidence from the calling songs of meadow katydids (Orthoptera: Tettigoniidae:Orchelimum) and reanalysis of published data. J Comp Physiol 101(1):57–69CrossRefGoogle Scholar
  105. Walker SE, Cade WH (2003) The effects of temperature and age on calling song in a field cricket with a complex calling song, Teleogryllus oceanicus (Orthoptera: Gryllidae). Can J Zool 81(8):1414–1420CrossRefGoogle Scholar
  106. Watt WB (1968) Adaptive significance of pigment polymorphisms in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation. Evolution 22(3):437–458CrossRefGoogle Scholar
  107. Wiens JJ, Graham CH, Moen DS, Smith SA, Reeder TW (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. Am Nat 168(5):579–596PubMedCrossRefGoogle Scholar
  108. Willmer P, Stone G, Johnston I (2009). Environmental physiology of animals. Wiley-BlackwellGoogle Scholar
  109. Willott SJ (1997) Thermoregulation in four species of British grasshoppers (Orthoptera: Acrididae). Funct Ecol 11(6):705–713CrossRefGoogle Scholar
  110. Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Science, Ecology Section, EBAL LaboratoriesHacettepe UniversityBeytepeTurkey

Personalised recommendations