Journal of Insect Behavior

, Volume 20, Issue 5, pp 503–513 | Cite as

Female Preferences for Male Song Characters in the Bush-Cricket Isophya camptoxypha (Orthoptera, Tettigonioidea)

  • Kirill Márk Orci


Female preferences for two male song characters (duration of syllables [DS], syllable repetition period [SRP]) have been studied in Isophya camptoxypha, an Eastern European duetting bush-cricket. Songs with modified DS or SRP were presented to virgin females and their response songs were recorded and counted. Female preference functions were unimodal for both characters. But while in the case of SRP the obtained female preference function reached its maximum at the mean value of that character, in the case of DS females preferred modified songs with a DS slightly higher than the natural range of that character. A comparison between the obtained preference functions and the DS and SRP values measured in sympatric Isophya species (with similar song structure) suggests that the two examined characters and female preferences for them may be effective components of the species-specific mate recognition system of I. camptoxypha. Moreover DS values may also convey information about the quality of the singing male.


Species recognition sexual selection female choice unimodal preference function duet acoustic communication 



I am very grateful to Gergely Szövényi and Barnabás Nagy for helping me in collecting and keeping the animals used in this study. My sincere thanks are due to Klaus-Gerhard Heller, Harold Dowse and an Anonymous reviewer for their helpful comments on the manuscript of this paper. I am very grateful to Richard Ranft for linguistic revision. This research was supported by the Hungarian Scientific Research Fund (OTKA F046 359) and a Bolyai Research Grant of the Hungarian Academy of Sciences.


  1. Alexander RD (1960) Sound communication in Orthoptera and Cicadidae. In: Lanyon WE, Tavolga WN (eds) Animal sounds and communication, Washington DC. Am Inst Biol Sci 7:38–92Google Scholar
  2. Bailey WJ (2003) Insect duets: underlying mechanisms and their evolution. Physiol Entomol 28:157–174CrossRefGoogle Scholar
  3. Barth FG (1990) Spider courtship: male vibrations, female responsiveness and reproductive isolation. In: Gribakin FG Wiese K, Popov AV (eds) Sensory systems and communication in Arthropods. Birkhauser, Basel, pp 161–166Google Scholar
  4. Bush SL, Gerhardt HC, Schul J (2002) Pattern recognition and call preferences in treefrogs (Anura: Hylidae): a quantitative analysis using a no-choice paradigm. Anim Behav 63:7–14CrossRefGoogle Scholar
  5. Claridge MF, Den Hollander J, Morgan JC (1984) Specificity of acoustic signals and mate choice in the brown planthopper Nilaparvata lugens. Entomol Exp Appl 35(3):221–226CrossRefGoogle Scholar
  6. Doherty JA, Storz MM (1992) Calling song and selective phonotaxis in the field-crickets, Gryllus firmus and G. pennsylvanicus (Orthoptera, Gryllidae). J Insect Behav 5(5):555–569CrossRefGoogle Scholar
  7. Eiriksson T (1993) Female preference for specific pulse duration of the male songs in the grasshopper, Omocestus viridulus. Anim Behav 45:471–477CrossRefGoogle Scholar
  8. Gerhardt HC (1991) Female mate choice in treefrogs: static and dynamic acoustic criteria. Anim Behav 42:615–635CrossRefGoogle Scholar
  9. Gerhardt HC, Tanner SD, Corrigan CM, Walton HC (2000) Female preference functions based on call duration in the gray tree frog (Hyla versicolor). Behav Ecol 11(6):663–669CrossRefGoogle Scholar
  10. Gray DA, Cade WH (2000) Sexual selection and speciation in field crickets. PNAS 97(26):14449–14454PubMedCrossRefGoogle Scholar
  11. Harz K (1969) Die Orthopteren Europas I. Ser Entomol 5:1–749Google Scholar
  12. Heller K-G (1988) Bioakustik der europäischen Laubheuschrecken (Ökologie in Forschung und Anwendung 1.). Margraf, WeikersheimGoogle Scholar
  13. Heller K-G (1990) Evolution of song pattern in East Mediterranean Phaneropterinae. In: Bailey, WJ, Rentz DCF (eds) The Tettigoniidae: biology, systematics, evolution. Crawford House Press, Bathurst, pp 130–151Google Scholar
  14. Heller K-G, von Helversen D (1986) Acoustic communication in phaneropterid bushcrickets: species-specific delay of female stridulatory response and matching male sensory time window. Behav Ecol Sociobiol 18:189–198CrossRefGoogle Scholar
  15. Heller, K-G, von Helversen, O, Sergejeva M (1997) Indiscriminate response behaviour in a female buschcricket: sex role reversal in selectivity of acoustic mate recognition? Naturwissenschaften 84:252–255CrossRefGoogle Scholar
  16. Heller K-G, Korsunovskaya O, Ragge DR, Vedenina V, Willemse F, Zhantiev RD, Frantsevich L (1998) Check-list of European Orthoptera. Articulata 7:1–61Google Scholar
  17. Heller K-G, Orci KM, Grein G, Ingrisch S (2004) The Isophya species of Central and Western Europe (Orthoptera: Tettigonioidea: Phaneropteridae). Tijdschr Entomol 147:237–258Google Scholar
  18. Ingrisch S (1991) Taxonomie der Isophya-Arten der Ostalpen (Grylloptera: Phaneropteridae). Mitt Schweiz Entomol Ges 64:269–279Google Scholar
  19. Jang Y, Greenfield MD (1996) Ultrasonic communication and sexual selection in wax moths: female choice based on energy and asynchrony of male signals. Anim Behav 51:1095–1106CrossRefGoogle Scholar
  20. Jang Y, Greenfield MD (1998) Absolute versus relative measurements of sexual selection: assessing the contributions of ultrasonic signal characters to mate attraction in lesser wax moths, Achroia grisella (Lepidoptera : Pyralidae). Evolution 52(5):1383–1393CrossRefGoogle Scholar
  21. Kalmring K, Jatho M, Roessler W, Sickmann T (1997) Acousto-vibratory communication in bushcrickets (Orthoptera: Tettigoniidae). Entomol Gen 21(4):265–291Google Scholar
  22. Kenyeres Z, Bauer N (2005) Untersuchung des Lebensraumes von Isophya camptoxypha (Fieber, 1853) im Kõszeg Gebirge (Westungarn). Articulata 20(1):1–15Google Scholar
  23. Kis B (1960) Revision der in Rumänien vorkommenden Isophya-Arten (Orthoptera, Phaneropterinae). Acta Zool Acad Sci Hung VI(3–4):349–369Google Scholar
  24. Kyriacou CP, Hall JC (1982) The function of courtship song rhythms in Drosophila. Anim Behav 30:794–801CrossRefGoogle Scholar
  25. Orci KM, Ragge DR, Reynolds WJ (2002) A re-examination of the taxonomy of Euchorthippus pulvinatus and related species on the basis of morphology and song. J Nat Hist 36(5):585–600CrossRefGoogle Scholar
  26. Orci KM, Nagy B, Szövényi G, Rácz I, Varga Z (2005) A comparative study on the song and morphology of Isophya stysi Èejchan, 1958 and Isophya modestior Brunner von Wattenwyl, 1882 (Orthoptera, Tettigoniidae). Zool Anz 244(1):31–42CrossRefGoogle Scholar
  27. Parri S, Alatalo RV, Kotiaho JS, Mappes J, Rivero A (2002) Sexual selection in the wolf spider Hygrolycosa rubrofasciata: female preference for drum duration and pulse rate. Behav Ecol 13(5):615–621CrossRefGoogle Scholar
  28. Ragge DR, Reynolds WJ, Willemse F (1990) The songs of the European grasshoppers of the Chorthippus group in relation to their taxonomy, speciation and biogeography. Bol Santidad Veg Plagas (Fuera de serie) 20:239–245Google Scholar
  29. Ragge DR, Reynolds WJ (1998) The songs of the grasshoppers and crickets of western Europe. Harley Books, Colchester, EnglandGoogle Scholar
  30. Robinson DJ, Hall MJ (2002) Sound signalling in Orthoptera. Adv Insect Physiol 29:151–278CrossRefGoogle Scholar
  31. Schul J (1998) Song recognition by temporal cues in a group of closely related bushcricket species (genus Tettigonia). J Comp Physiol A183(3):401–410CrossRefGoogle Scholar
  32. Shaw KL, Herlihy DP (2000) Acoustic preference functions and song variability in the Hawaiian cricket Laupala cerasina. Proc R Soc London B267:577–584CrossRefGoogle Scholar
  33. Smith MJ, Roberts JD (2003) An experimental examination of female preference patterns for components of the male advertisement call in the quacking frog, Crinia georgiana. Behav Ecol Sociobiol 55(2):144–150CrossRefGoogle Scholar
  34. Stumpner A, von Helversen O (1994) Song production and song recognition in a group of sibling grasshopper species (Chorthippus dorsatus, Ch. dichrous and Ch. loratus: Orthoptera, Acrididae). Bioacoustics 6:1–23Google Scholar
  35. Stumpner A, Meyer S (2001) Songs and function of song elements in four duetting bushcricket species (Ensifera, Phaneropteridae, Barbitistes). J Insect Behav 14(4):511–534CrossRefGoogle Scholar
  36. Tárano Z, Herrera EA (2003) Female preferences for call traits and male mating success in the neotropical frog Physalaemus enesefae. Ethology 109:121–134CrossRefGoogle Scholar
  37. Talyn BC, Dowse HB (2004) The role of courtship song in sexual selection and species recognition by female Drosophila melanogaster. Anim Behav 68:1165–1180CrossRefGoogle Scholar
  38. Tauber E, Pener MP (2000) Song recognition in female bushcrickets Phaneroptera nana. J Exp Biol 203:597–603PubMedGoogle Scholar
  39. Tauber E, Cohen D, Greenfield MD, Pener MP (2001) Duet singing and female choice in the bush-cricket Phaneroptera nana. Behaviour 138:411–430CrossRefGoogle Scholar
  40. von Helversen O (1986) Gesang und Balz bei Feldheuschrecken der Chorthippus albomarginatus–Gruppe (Orthoptera: Acrididae). Zool Jahrb (Systematik) 113:319–342Google Scholar
  41. von Helversen D, von Helversen O (1994) Forces driving coevolution of song and song recognition in grasshoppers. In: Schildbelger K, Elsner N (eds) Neural basis of behavioural adaptations. Gustav Fischer, New York pp 253–284Google Scholar
  42. Walker TJ, Forrest TG, Spooner JD (2003) The rotundifolia complex of the genus Amblycorypha (Orthoptera: Tettigoniidae): Songs reveal new species. Ann Entomol Soc Am 96(4):433–447CrossRefGoogle Scholar
  43. Zhantiev RD, Dubrovin NN (1977) Sound communication in the genus Isophya (Orthoptera, Tettigoniidae). Zool Z 56:38–51 (in Russian with English summary)Google Scholar
  44. Zhantiev RD, Korsunovskaya OS (1986) Sound communication in bushcrickets (Tettigoniidae, Phaneropterinae) of the European part of USSR. Zool Z 65:1151–1163Google Scholar
  45. Zhantiev RD, Korsunovskaya OS (1990) Sound communication of Phaneropteridae (Orthoptera). In: Gribakin FG, Wiese K, Popov AV (eds) Sensory systems and communication in arthropods, Birkhäuser, Basel, pp 366–370Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Animal Ecology Research Group of the Hungarian Academy of Sciences and Hungarian Natural History MuseumBudapestHungary

Personalised recommendations