Enhancement in Adhesive and Thermal Properties of Bio‐based Epoxy Resin by Using Eugenol Grafted Cellulose Nanocrystals

Abstract

Bio-based epoxy resins are being used due to their green chemistry. They have better properties than petroleum-based epoxy resins. Recently, environment friendly nanomaterials have been used for different industrial applications. Cellulose nanocrystals (CNCs) are among the best naturally occurring materials. Therefore, the surface of cellulose nanocrystals are modified by eugenol-based silane coupling agent (EBSCA). Chemical composition and surface morphologies of CNCs were analyzed and characterized by FTIR, AFM, SEM, TEM and 1H-NMR. The SEM and AFM results confirmed eugenol-based silane coupling agent was successfully grafted on cellulose nanocrystals. Modified CNCs demonstrated an excellent tensile strength (2190 MPa) and modulus (16.00 MPa), as well as storage modulus (1622 MPa) exhibited by 1wt% modified cellulose nanocrystals composites. Additionally, modified CNCs displayed hydrophobic behavior (CA = 102 ± 2°). The corresponding modified CNCs have significant applications in combination of high stiffness and strength to the epoxy resins. This study lays a foundation towards full bio-based, environment friendly polymers fabrication and consumptions most desirable in adhesive and mechanical industrial fields.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    J. Cao, H. Fan, B.G. Li, S.P. Zhu, Synthesis and evaluation of double-decker silsesquioxanes as modifying agent for epoxy resin. Polymer 124, 157–167 (2017). https://doi.org/10.1016/j.polymer.2017.07.056

    CAS  Article  Google Scholar 

  2. 2.

    J. Zheng, X. Zhang, J. Cao, R. Chen, T. Aziz, H. Fan, C. Bittencourt, Behavior of epoxy resin filled with nano-SiO2 treated with a Eugenol epoxy silane. J. Appl. Polym. Sci. 138(14), 50138 (2021). https://doi.org/10.1002/app.50138

    CAS  Article  Google Scholar 

  3. 3.

    J. Parameswaranpillai, S.P. Ramanan, J.J. George, S. Jose, A.K. Zachariah, S. Siengchin, K. Yorseng, A. Janke, J. Pionteck, PEG-ran-PPG modified epoxy thermosets: a simple approach to develop tough shape memory polymers. Ind. Eng. Chem. Res. 57(10), 3583–3590 (2018). https://doi.org/10.1021/acs.iecr.7b04872

    CAS  Article  Google Scholar 

  4. 4.

    M.R. Ricciardi, I. Papa, A. Langella, T. Langella, V. Lopresto, V. Antonucci, Mechanical properties of glass fibre composites based on nitrile rubber toughened modified epoxy resin. Compos. B 139, 259–267 (2018). https://doi.org/10.1016/j.compositesb.2017.11.056

    CAS  Article  Google Scholar 

  5. 5.

    T. Aziz, H. Fan, F.U. Khan, M. Haroon, L. Cheng, Modified silicone oil types, mechanical properties and applications. Polym. Bull. 76(4), 2129–2145 (2019). https://doi.org/10.1007/s00289-018-2471-2

    CAS  Article  Google Scholar 

  6. 6.

    J.Q. Tan, W.Q. Liu, Z.F. Wang, Hydrophobic epoxy resins modified by low concentrations of comb-shaped fluorinated reactive modifier. Prog. Org. Coat. 105, 353–361 (2017). https://doi.org/10.1016/j.porgcoat.2017.01.018

    CAS  Article  Google Scholar 

  7. 7.

    T. Aziz, H. Fan, F. Haq, F.U. Khan, A. Numan, M. Iqbal, M. Raheel, M. Kiran, N. Wazir, Adhesive properties of poly (methyl silsesquioxanes)/bio-based epoxy nanocomposites. Iran. Polym. J. 29(10), 911–918 (2020). https://doi.org/10.1007/s13726-020-00849-x

    CAS  Article  Google Scholar 

  8. 8.

    H. Yahyaei, M. Ebrahimi, H.V. Tahami, E.R. Mafi, E. Akbarinezhad, Toughening mechanisms of rubber modified thin film epoxy resins: part 2-study of abrasion, thermal and corrosion resistance. Prog. Org. Coat. 113, 136–142 (2017). https://doi.org/10.1016/j.porgcoat.2017.09.007

    CAS  Article  Google Scholar 

  9. 9.

    M.I. Jamil, X. Zhan, F. Chen, D. Cheng, Q. Zhang, Durable and scalable candle soot icephobic coating with nucleation and fracture mechanism. ACS Appl. Mater. Interfaces 11(34), 31532–31542 (2019). https://doi.org/10.1021/acsami.9b09819

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    A. Abdollahi, H. Roghani-Mamagani, M. Salami-Kalajahi, A. Mousavi, B. Razavi, S. Shahi, Preparation of organic-inorganic hybrid nanocomposites from chemically modified epoxy and novolac resins and silica-attached carbon nanotubes by sol–gel process: investigation of thermal degradation and stability. Prog. Org. Coat. 117, 154–165 (2018). https://doi.org/10.1016/j.porgcoat.2018.01.001

    CAS  Article  Google Scholar 

  11. 11.

    T. Aziz, H. Fan, F. Khan, R. Ullah, F. Haq, M. Iqbal, A. Ullah, Synthesis of carboxymethyl starch-bio-based epoxy resin and their impact on mechanical properties. Zeitschrift für Physikalische Chemie 234(11–12), 1759–1769 (2019). https://doi.org/10.1515/zpch-2019-1434

    CAS  Article  Google Scholar 

  12. 12.

    A.M. Mansour, Fabrication and characterization of a photodiode based on 5′,5′′-dibromo-o-cresolsulfophthalein (BCP). Silicon-Neth 11(4), 1989–1996 (2019). https://doi.org/10.1007/s12633-018-0016-9

    CAS  Article  Google Scholar 

  13. 13.

    M.I. Jamil, A. Ali, F. Haq, Q. Zhang, X. Zhan, F. Chen, Icephobic strategies and materials with superwettability: design principles and mechanism. Langmuir 34(50), 15425–15444 (2018). https://doi.org/10.1021/acs.langmuir.8b03276

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    G. Chen, J.H. Feng, W. Qiu, Y.M. Zhao, Eugenol-modified polysiloxanes as effective anticorrosion additives for epoxy resin coatings. RSC Adv. 7(88), 55967–55976 (2017). https://doi.org/10.1039/c7ra12218g

    CAS  Article  Google Scholar 

  15. 15.

    M.I. Jamil, L. Song, J. Zhu, N. Ahmed, X. Zhan, F. Chen, D. Cheng, Q. Zhang, Facile approach to design a stable, damage resistant, slippery, and omniphobic surface. RSC Adv. 10(33), 19157–19168 (2020). https://doi.org/10.1039/D0RA01786H

    CAS  Article  Google Scholar 

  16. 16.

    Z.Y. Chi, Z.W. Guo, Z.C. Xu, M.J. Zhang, M. Li, L. Shang, Y.H. Ao, A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: synthesis, flame-retardant behavior and mechanism. Polym. Degrad. Stabil. (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109151

    Article  Google Scholar 

  17. 17.

    F. Fang, S.Q. Huo, H.F. Shen, S.Y. Ran, H. Wang, P.G. Song, Z.P. Fang, A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins. Compos. Commun. 17, 104–108 (2020). https://doi.org/10.1016/j.coco.2019.11.011

    Article  Google Scholar 

  18. 18.

    W.Q. Xie, D.L. Tang, S.M. Liu, J.Q. Zhao, Facile synthesis of bio-based phosphorus-containing epoxy resins with excellent flame resistance. Polym. Test. (2020). https://doi.org/10.1016/j.polymertesting.2020.106466

    Article  Google Scholar 

  19. 19.

    T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham, T. Ben-Shalom, S. Lapidot, O. Shoseyov, Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 39, 76–88 (2016). https://doi.org/10.1016/j.copbio.2016.01.002

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    A.M. El Nahrawy, A.B.A. Hammad, A.M. Mansour, A.M. Youssef, A.M. Othman, A. Applied Physics, Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO:Cu nanocomposites. Mater. Sci. Process. 125(1), 1–9 (2019). https://doi.org/10.1016/j.matchemphys.2020.123574

    CAS  Article  Google Scholar 

  21. 21.

    E.M. El-Menyawy, I.T. Zedan, A.M. Mansour, H.H. Nawar, Thermal stability, AC electrical conductivity and dielectric properties of N-(5-{[antipyrinyl-hydrazono]-cyanomethyl}-[1,3,4]thiadiazol-2-yl)-benzamide. J. Alloys Compd. 611, 50–56 (2014). https://doi.org/10.1016/j.jallcom.2014.05.120

    CAS  Article  Google Scholar 

  22. 22.

    W.A. Paixão, L.S. Martins, N.C. Zanini, D.R. Mulinari, Modification and characterization of cellulose fibers from palm coated by ZrO2·nH2O particles for sorption of dichromate ions. J. Inorg. Organomet. Polym. Mater. 30(7), 2591–2597 (2020). https://doi.org/10.1007/s10904-019-01415-6

    CAS  Article  Google Scholar 

  23. 23.

    J. Zhou, Y.Y. Jiang, G.Q. Wu, W.J. Wu, Y. Wang, K. Wu, Y.H. Cheng, Investigation of dielectric and thermal conductive properties of epoxy resins modified by core–shell structured PS@SiO2. Compos. A 97, 76–82 (2017). https://doi.org/10.1016/j.compositesa.2017.03.005

    CAS  Article  Google Scholar 

  24. 24.

    T. Aziz, H. Fan, X. Zhang, F.U. Khan, S. Fahad, A. Ullah, Adhesive properties of bio-based epoxy resin reinforced by cellulose nanocrystal additives. J. Polym. Eng. 40(4), 314–320 (2020). https://doi.org/10.1515/polyeng-2019-0255

    CAS  Article  Google Scholar 

  25. 25.

    A. Ali, X. Liu, Y. Guo, M.A. Akram, H. Wu, W. Liu, A. Khan, B. Jiang, Z. Fu, Z. Fan, Kinetics and mechanism of ethylene and propylene polymerizations catalyzed with ansa-zirconocene activated by borate/TIBA. J. Organomet. Chem. 922, 121366 (2020). https://doi.org/10.1016/j.jorganchem.2020.121366

    CAS  Article  Google Scholar 

  26. 26.

    E. Abraham, D. Kam, Y. Nevo, R. Slattegard, A. Rivkin, S. Lapidot, O. Shoseyov, Highly modified cellulose nanocrystals and formation of epoxy nanocrystalline cellulose (CNC) nanocomposites. ACS Appl. Mater. Interfaces 8(41), 28086–28095 (2016). https://doi.org/10.1021/acsami.6b09852

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    T. Aziz, H. Fan, F. Haq, F.U. Khan, A. Numan, A. Ullah, N. Wazir, Facile modification and application of cellulose nanocrystals. Iran. Polym. J. 28(8), 707–724 (2019). https://doi.org/10.1007/s13726-019-00734-2

    Article  Google Scholar 

  28. 28.

    W.B. Du, J. Guo, H.M. Li, Y. Gao, Heterogeneously modified cellulose nanocrystals-stabilized pickering emulsion: preparation and their template application for the creation of PS microspheres with amino-rich surfaces. ACS Sustain. Chem. Eng. 5(9), 7514–7523 (2017). https://doi.org/10.1021/acssuschemeng.7b00375

    CAS  Article  Google Scholar 

  29. 29.

    R. Sunasee, U.D. Hemraz, Synthetic strategies for the fabrication of cationic surface-modified cellulose nanocrystals. Fibers 6(1), 1–15 (2018). https://doi.org/10.3390/fib6010015

    CAS  Article  Google Scholar 

  30. 30.

    T. Aziz, H. Fan, X. Zhang, F. Khan, Synergistic impact of cellulose nanocrystals and calcium sulfate fillers on adhesion behavior of epoxy resin. Mater. Res. Express 6(11), 1150 (2019). https://doi.org/10.1088/2053-1591/ab4df6

    Article  Google Scholar 

  31. 31.

    E.M. El-Menyawy, A.M. Mansour, N.A. El-Ghamaz, S.A. El-Khodary, Electrical conduction mechanisms and thermal properties of 2-(2, 3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-ylimino)-2-(4-nitrophenyl)acetonitrile. Phys. B 413, 31–35 (2013). https://doi.org/10.1016/j.physb.2012.12.030

    CAS  Article  Google Scholar 

  32. 32.

    L. Yue, A. Maiorana, F. Khelifa, A. Patel, J.M. Raquez, L. Bonnaud, R. Gross, P. Dubois, I. Manas-Zloczower, Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites. Polymer 134, 155–162 (2018). https://doi.org/10.1016/j.polymer.2017.11.051

    CAS  Article  Google Scholar 

  33. 33.

    T.A. Hameed, F. Mohamed, A.M. Mansour, I.K. Battisha, Synthesis of Sm3 + and Gd3 + ions embedded in nano-structure barium titanate prepared by sol-gel technique: terahertz, dielectric and up-conversion study. ECS J. Solid State Sci. Technol. 9(12), 123005 (2020). https://doi.org/10.1149/2162-8777/abc96b

    CAS  Article  Google Scholar 

  34. 34.

    Z. Zhang, K.C. Tam, X.S. Wang, G. Sebe, Inverse pickering emulsions stabilized by cinnamate modified cellulose nanocrystals as templates to prepare silica colloidosomes. ACS Sustain. Chem. Eng. 6(2), 2583–2590 (2018). https://doi.org/10.1021/acssuschemeng.7b04061

    CAS  Article  Google Scholar 

  35. 35.

    T. Aziz, H. Fan, X. Zhang, F. Haq, A. Ullah, R. Ullah, F.U. Khan, M. Iqbal, Advance study of cellulose nanocrystals properties and applications. J. Polym. Environ. 28(4), 1117–1128 (2020). https://doi.org/10.1007/s10924-020-01674-2

    CAS  Article  Google Scholar 

  36. 36.

    L. Zhou, H. He, M.C. Li, S.W. Huang, C.T. Mei, Q.L. Wu, Enhancing mechanical properties of poly(lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Ind. Crop. Prod. 112, 449–459 (2018). https://doi.org/10.1016/j.indcrop.2017.12.044

    CAS  Article  Google Scholar 

  37. 37.

    N. Ali, F. Ali, R. Khurshid, Z. Ikramullah, Ali, A. Afzal, M. Bilal, H.M.N. Iqbal, I. Ahmad, TiO2 nanoparticles and epoxy-TiO2 nanocomposites: a review of synthesis, modification strategies, and photocatalytic potentialities. J. Inorg. Organomet. Polym. Mater. 30(12), 4829–4846 (2020). https://doi.org/10.1007/s10904-020-01668-6

    CAS  Article  Google Scholar 

  38. 38.

    E. Abraham, D.E. Weber, S. Sharon, S. Lapidot, O. Shoseyov, Multifunctional cellulosic scaffolds from modified cellulose nanocrystals. ACS Appl. Mater. Interfaces 9(3), 2010–2015 (2017). https://doi.org/10.1021/acsami.6b13528

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    T. Aziz, A. Ullah, H. Fan, R. Ullah, F. Haq, F.U. Khan, M. Iqbal, J. Wei, Cellulose nanocrystals applications in health, medicine and catalysis. J. Polym. Environ. (2021). https://doi.org/10.1007/s10924-021-02045-1

    Article  Google Scholar 

  40. 40.

    A. Boujemaoui, C.C. Sanchez, J. Engstrom, C. Bruce, L. Fogelstrom, A. Carlmark, E. Malmstrom, Polycaprolactone nanocomposites reinforced with cellulose nanocrystals surface-modified via covalent grafting or physisorption: a comparative study. ACS Appl. Mater. Interfaces 9(40), 35305–35318 (2017). https://doi.org/10.1021/acsami.7b09009

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    S. Gardebjer, A. Bergstrand, A. Idstrom, C. Borstell, S. Naana, L. Nordstierna, A. Larsson, Solid-state NMR to quantify surface coverage and chain length of lactic acid modified cellulose nanocrystals, used as fillers in biodegradable composites. Compos. Sci. Technol. 107, 1–9 (2015). https://doi.org/10.1016/j.compscitech.2014.11.014

    CAS  Article  Google Scholar 

  42. 42.

    U. Hemraz, K. A Campbell, S. Burdick, J. Ckless, K. Boluk, Y. Sunasee, Cationic poly(2-aminoethylmethacrylate) and poly(N-(2-aminoethylmethacrylamide) modified cellulose nanocrystals: synthesis, characterization, and cytotoxicity. Biomacromolecules 16, 319–325 (2014). https://doi.org/10.1021/bm501516r

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    C. Li, H. Fan, T. Aziz, C. Bittencourt, L. Wu, D.-Y. Wang, P. Dubois, Biobased epoxy resin with low electrical permissivity and flame retardancy: from environmental friendly high-throughput synthesis to properties. ACS Sustain. Chem. Eng. 6(7), 8856–8867 (2018). https://doi.org/10.1021/acssuschemeng.8b01212

    CAS  Article  Google Scholar 

  44. 44.

    M. Rincon-Iglesias, E. Lizundia, D.M. Correia, C.M. Costa, S. Lanceros-Mendez, The role of CNC surface modification on the structural, thermal and electrical properties of poly(vinylidene fluoride) nanocomposites. Cellulose 27(7), 3821–3834 (2020). https://doi.org/10.1007/s10570-020-03067-z

    CAS  Article  Google Scholar 

  45. 45.

    D. Yang, X. Peng, L. Zhong, X. Cao, W. Chen, S. Wang, C. Liu, R. Sun, Fabrication of a highly elastic nanocomposite hydrogel by surface modification of cellulose nanocrystals. RSC Adv. 5(18), 13878–13885 (2015). https://doi.org/10.1039/C4RA10748A

    CAS  Article  Google Scholar 

  46. 46.

    H. Khanjanzadeh, R. Behrooz, N. Bahramifar, W. Gindl-Altmutter, M. Bacher, M. Edler, T. Griesser, Surface chemical functionalization of cellulose nanocrystals by 3-amino propyltriethoxysilane. Int. J. Biol. Macromol. 106, 1288–1296 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.136

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    L.X. Du, J.W. Wang, Y. Zhang, C.S. Qi, M.P. Wolcott, Z.M. Yu, Preparation and characterization of cellulose nanocrystals from the bio-ethanol residuals. Nanomaterials 7(3), 1–12 (2017). https://doi.org/10.3390/nano7030051

    CAS  Article  Google Scholar 

  48. 48.

    H.A. Al-Turaif, Relationship between tensile properties and film formation kinetics of epoxy resin reinforced with nanofibrillated cellulose. Prog. Org. Coat. 76(2–3), 477–481 (2013). https://doi.org/10.1016/j.porgcoat.2012.11.001

    CAS  Article  Google Scholar 

  49. 49.

    J.A.M. Ferreira, P.N.B. Reis, J.D.M. Costa, C. Capela, Assessment of the mechanical properties of nanoclays enhanced low T-g epoxy resins. Fibers Polym. 15(8), 1677–1684 (2014). https://doi.org/10.1007/s12221-014-1677-7

    CAS  Article  Google Scholar 

  50. 50.

    I.F. Pinheiro, F.V. Ferreira, D.H.S. Souza, R.F. Gouveia, L.M.F. Lona, A.R. Morales, L.H.I. Mei, Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur. Polym. J. 97, 356–365 (2017). https://doi.org/10.1016/j.eurpolymj.2017.10.026

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the State Key Laboratory of Chemical Engineering, Zhejiang University 310027 Hangzhou, China.

Funding

This research work is not funded by any agency.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tariq Aziz.

Ethics declarations

Conflict of interest

We have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aziz, T., Zheng, J., Jamil, M.I. et al. Enhancement in Adhesive and Thermal Properties of Bio‐based Epoxy Resin by Using Eugenol Grafted Cellulose Nanocrystals. J Inorg Organomet Polym (2021). https://doi.org/10.1007/s10904-021-01942-1

Download citation

Keywords

  • Adhesive
  • Cellulose nanocrystals
  • Coupling agent
  • EBSCA: Epoxy resin