Abstract
Bio-based epoxy resins are being used due to their green chemistry. They have better properties than petroleum-based epoxy resins. Recently, environment friendly nanomaterials have been used for different industrial applications. Cellulose nanocrystals (CNCs) are among the best naturally occurring materials. Therefore, the surface of cellulose nanocrystals are modified by eugenol-based silane coupling agent (EBSCA). Chemical composition and surface morphologies of CNCs were analyzed and characterized by FTIR, AFM, SEM, TEM and 1H-NMR. The SEM and AFM results confirmed eugenol-based silane coupling agent was successfully grafted on cellulose nanocrystals. Modified CNCs demonstrated an excellent tensile strength (2190 MPa) and modulus (16.00 MPa), as well as storage modulus (1622 MPa) exhibited by 1wt% modified cellulose nanocrystals composites. Additionally, modified CNCs displayed hydrophobic behavior (CA = 102 ± 2°). The corresponding modified CNCs have significant applications in combination of high stiffness and strength to the epoxy resins. This study lays a foundation towards full bio-based, environment friendly polymers fabrication and consumptions most desirable in adhesive and mechanical industrial fields.
This is a preview of subscription content, access via your institution.










References
- 1.
J. Cao, H. Fan, B.G. Li, S.P. Zhu, Synthesis and evaluation of double-decker silsesquioxanes as modifying agent for epoxy resin. Polymer 124, 157–167 (2017). https://doi.org/10.1016/j.polymer.2017.07.056
- 2.
J. Zheng, X. Zhang, J. Cao, R. Chen, T. Aziz, H. Fan, C. Bittencourt, Behavior of epoxy resin filled with nano-SiO2 treated with a Eugenol epoxy silane. J. Appl. Polym. Sci. 138(14), 50138 (2021). https://doi.org/10.1002/app.50138
- 3.
J. Parameswaranpillai, S.P. Ramanan, J.J. George, S. Jose, A.K. Zachariah, S. Siengchin, K. Yorseng, A. Janke, J. Pionteck, PEG-ran-PPG modified epoxy thermosets: a simple approach to develop tough shape memory polymers. Ind. Eng. Chem. Res. 57(10), 3583–3590 (2018). https://doi.org/10.1021/acs.iecr.7b04872
- 4.
M.R. Ricciardi, I. Papa, A. Langella, T. Langella, V. Lopresto, V. Antonucci, Mechanical properties of glass fibre composites based on nitrile rubber toughened modified epoxy resin. Compos. B 139, 259–267 (2018). https://doi.org/10.1016/j.compositesb.2017.11.056
- 5.
T. Aziz, H. Fan, F.U. Khan, M. Haroon, L. Cheng, Modified silicone oil types, mechanical properties and applications. Polym. Bull. 76(4), 2129–2145 (2019). https://doi.org/10.1007/s00289-018-2471-2
- 6.
J.Q. Tan, W.Q. Liu, Z.F. Wang, Hydrophobic epoxy resins modified by low concentrations of comb-shaped fluorinated reactive modifier. Prog. Org. Coat. 105, 353–361 (2017). https://doi.org/10.1016/j.porgcoat.2017.01.018
- 7.
T. Aziz, H. Fan, F. Haq, F.U. Khan, A. Numan, M. Iqbal, M. Raheel, M. Kiran, N. Wazir, Adhesive properties of poly (methyl silsesquioxanes)/bio-based epoxy nanocomposites. Iran. Polym. J. 29(10), 911–918 (2020). https://doi.org/10.1007/s13726-020-00849-x
- 8.
H. Yahyaei, M. Ebrahimi, H.V. Tahami, E.R. Mafi, E. Akbarinezhad, Toughening mechanisms of rubber modified thin film epoxy resins: part 2-study of abrasion, thermal and corrosion resistance. Prog. Org. Coat. 113, 136–142 (2017). https://doi.org/10.1016/j.porgcoat.2017.09.007
- 9.
M.I. Jamil, X. Zhan, F. Chen, D. Cheng, Q. Zhang, Durable and scalable candle soot icephobic coating with nucleation and fracture mechanism. ACS Appl. Mater. Interfaces 11(34), 31532–31542 (2019). https://doi.org/10.1021/acsami.9b09819
- 10.
A. Abdollahi, H. Roghani-Mamagani, M. Salami-Kalajahi, A. Mousavi, B. Razavi, S. Shahi, Preparation of organic-inorganic hybrid nanocomposites from chemically modified epoxy and novolac resins and silica-attached carbon nanotubes by sol–gel process: investigation of thermal degradation and stability. Prog. Org. Coat. 117, 154–165 (2018). https://doi.org/10.1016/j.porgcoat.2018.01.001
- 11.
T. Aziz, H. Fan, F. Khan, R. Ullah, F. Haq, M. Iqbal, A. Ullah, Synthesis of carboxymethyl starch-bio-based epoxy resin and their impact on mechanical properties. Zeitschrift für Physikalische Chemie 234(11–12), 1759–1769 (2019). https://doi.org/10.1515/zpch-2019-1434
- 12.
A.M. Mansour, Fabrication and characterization of a photodiode based on 5′,5′′-dibromo-o-cresolsulfophthalein (BCP). Silicon-Neth 11(4), 1989–1996 (2019). https://doi.org/10.1007/s12633-018-0016-9
- 13.
M.I. Jamil, A. Ali, F. Haq, Q. Zhang, X. Zhan, F. Chen, Icephobic strategies and materials with superwettability: design principles and mechanism. Langmuir 34(50), 15425–15444 (2018). https://doi.org/10.1021/acs.langmuir.8b03276
- 14.
G. Chen, J.H. Feng, W. Qiu, Y.M. Zhao, Eugenol-modified polysiloxanes as effective anticorrosion additives for epoxy resin coatings. RSC Adv. 7(88), 55967–55976 (2017). https://doi.org/10.1039/c7ra12218g
- 15.
M.I. Jamil, L. Song, J. Zhu, N. Ahmed, X. Zhan, F. Chen, D. Cheng, Q. Zhang, Facile approach to design a stable, damage resistant, slippery, and omniphobic surface. RSC Adv. 10(33), 19157–19168 (2020). https://doi.org/10.1039/D0RA01786H
- 16.
Z.Y. Chi, Z.W. Guo, Z.C. Xu, M.J. Zhang, M. Li, L. Shang, Y.H. Ao, A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: synthesis, flame-retardant behavior and mechanism. Polym. Degrad. Stabil. (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109151
- 17.
F. Fang, S.Q. Huo, H.F. Shen, S.Y. Ran, H. Wang, P.G. Song, Z.P. Fang, A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins. Compos. Commun. 17, 104–108 (2020). https://doi.org/10.1016/j.coco.2019.11.011
- 18.
W.Q. Xie, D.L. Tang, S.M. Liu, J.Q. Zhao, Facile synthesis of bio-based phosphorus-containing epoxy resins with excellent flame resistance. Polym. Test. (2020). https://doi.org/10.1016/j.polymertesting.2020.106466
- 19.
T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham, T. Ben-Shalom, S. Lapidot, O. Shoseyov, Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 39, 76–88 (2016). https://doi.org/10.1016/j.copbio.2016.01.002
- 20.
A.M. El Nahrawy, A.B.A. Hammad, A.M. Mansour, A.M. Youssef, A.M. Othman, A. Applied Physics, Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO:Cu nanocomposites. Mater. Sci. Process. 125(1), 1–9 (2019). https://doi.org/10.1016/j.matchemphys.2020.123574
- 21.
E.M. El-Menyawy, I.T. Zedan, A.M. Mansour, H.H. Nawar, Thermal stability, AC electrical conductivity and dielectric properties of N-(5-{[antipyrinyl-hydrazono]-cyanomethyl}-[1,3,4]thiadiazol-2-yl)-benzamide. J. Alloys Compd. 611, 50–56 (2014). https://doi.org/10.1016/j.jallcom.2014.05.120
- 22.
W.A. Paixão, L.S. Martins, N.C. Zanini, D.R. Mulinari, Modification and characterization of cellulose fibers from palm coated by ZrO2·nH2O particles for sorption of dichromate ions. J. Inorg. Organomet. Polym. Mater. 30(7), 2591–2597 (2020). https://doi.org/10.1007/s10904-019-01415-6
- 23.
J. Zhou, Y.Y. Jiang, G.Q. Wu, W.J. Wu, Y. Wang, K. Wu, Y.H. Cheng, Investigation of dielectric and thermal conductive properties of epoxy resins modified by core–shell structured PS@SiO2. Compos. A 97, 76–82 (2017). https://doi.org/10.1016/j.compositesa.2017.03.005
- 24.
T. Aziz, H. Fan, X. Zhang, F.U. Khan, S. Fahad, A. Ullah, Adhesive properties of bio-based epoxy resin reinforced by cellulose nanocrystal additives. J. Polym. Eng. 40(4), 314–320 (2020). https://doi.org/10.1515/polyeng-2019-0255
- 25.
A. Ali, X. Liu, Y. Guo, M.A. Akram, H. Wu, W. Liu, A. Khan, B. Jiang, Z. Fu, Z. Fan, Kinetics and mechanism of ethylene and propylene polymerizations catalyzed with ansa-zirconocene activated by borate/TIBA. J. Organomet. Chem. 922, 121366 (2020). https://doi.org/10.1016/j.jorganchem.2020.121366
- 26.
E. Abraham, D. Kam, Y. Nevo, R. Slattegard, A. Rivkin, S. Lapidot, O. Shoseyov, Highly modified cellulose nanocrystals and formation of epoxy nanocrystalline cellulose (CNC) nanocomposites. ACS Appl. Mater. Interfaces 8(41), 28086–28095 (2016). https://doi.org/10.1021/acsami.6b09852
- 27.
T. Aziz, H. Fan, F. Haq, F.U. Khan, A. Numan, A. Ullah, N. Wazir, Facile modification and application of cellulose nanocrystals. Iran. Polym. J. 28(8), 707–724 (2019). https://doi.org/10.1007/s13726-019-00734-2
- 28.
W.B. Du, J. Guo, H.M. Li, Y. Gao, Heterogeneously modified cellulose nanocrystals-stabilized pickering emulsion: preparation and their template application for the creation of PS microspheres with amino-rich surfaces. ACS Sustain. Chem. Eng. 5(9), 7514–7523 (2017). https://doi.org/10.1021/acssuschemeng.7b00375
- 29.
R. Sunasee, U.D. Hemraz, Synthetic strategies for the fabrication of cationic surface-modified cellulose nanocrystals. Fibers 6(1), 1–15 (2018). https://doi.org/10.3390/fib6010015
- 30.
T. Aziz, H. Fan, X. Zhang, F. Khan, Synergistic impact of cellulose nanocrystals and calcium sulfate fillers on adhesion behavior of epoxy resin. Mater. Res. Express 6(11), 1150 (2019). https://doi.org/10.1088/2053-1591/ab4df6
- 31.
E.M. El-Menyawy, A.M. Mansour, N.A. El-Ghamaz, S.A. El-Khodary, Electrical conduction mechanisms and thermal properties of 2-(2, 3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-ylimino)-2-(4-nitrophenyl)acetonitrile. Phys. B 413, 31–35 (2013). https://doi.org/10.1016/j.physb.2012.12.030
- 32.
L. Yue, A. Maiorana, F. Khelifa, A. Patel, J.M. Raquez, L. Bonnaud, R. Gross, P. Dubois, I. Manas-Zloczower, Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites. Polymer 134, 155–162 (2018). https://doi.org/10.1016/j.polymer.2017.11.051
- 33.
T.A. Hameed, F. Mohamed, A.M. Mansour, I.K. Battisha, Synthesis of Sm3 + and Gd3 + ions embedded in nano-structure barium titanate prepared by sol-gel technique: terahertz, dielectric and up-conversion study. ECS J. Solid State Sci. Technol. 9(12), 123005 (2020). https://doi.org/10.1149/2162-8777/abc96b
- 34.
Z. Zhang, K.C. Tam, X.S. Wang, G. Sebe, Inverse pickering emulsions stabilized by cinnamate modified cellulose nanocrystals as templates to prepare silica colloidosomes. ACS Sustain. Chem. Eng. 6(2), 2583–2590 (2018). https://doi.org/10.1021/acssuschemeng.7b04061
- 35.
T. Aziz, H. Fan, X. Zhang, F. Haq, A. Ullah, R. Ullah, F.U. Khan, M. Iqbal, Advance study of cellulose nanocrystals properties and applications. J. Polym. Environ. 28(4), 1117–1128 (2020). https://doi.org/10.1007/s10924-020-01674-2
- 36.
L. Zhou, H. He, M.C. Li, S.W. Huang, C.T. Mei, Q.L. Wu, Enhancing mechanical properties of poly(lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Ind. Crop. Prod. 112, 449–459 (2018). https://doi.org/10.1016/j.indcrop.2017.12.044
- 37.
N. Ali, F. Ali, R. Khurshid, Z. Ikramullah, Ali, A. Afzal, M. Bilal, H.M.N. Iqbal, I. Ahmad, TiO2 nanoparticles and epoxy-TiO2 nanocomposites: a review of synthesis, modification strategies, and photocatalytic potentialities. J. Inorg. Organomet. Polym. Mater. 30(12), 4829–4846 (2020). https://doi.org/10.1007/s10904-020-01668-6
- 38.
E. Abraham, D.E. Weber, S. Sharon, S. Lapidot, O. Shoseyov, Multifunctional cellulosic scaffolds from modified cellulose nanocrystals. ACS Appl. Mater. Interfaces 9(3), 2010–2015 (2017). https://doi.org/10.1021/acsami.6b13528
- 39.
T. Aziz, A. Ullah, H. Fan, R. Ullah, F. Haq, F.U. Khan, M. Iqbal, J. Wei, Cellulose nanocrystals applications in health, medicine and catalysis. J. Polym. Environ. (2021). https://doi.org/10.1007/s10924-021-02045-1
- 40.
A. Boujemaoui, C.C. Sanchez, J. Engstrom, C. Bruce, L. Fogelstrom, A. Carlmark, E. Malmstrom, Polycaprolactone nanocomposites reinforced with cellulose nanocrystals surface-modified via covalent grafting or physisorption: a comparative study. ACS Appl. Mater. Interfaces 9(40), 35305–35318 (2017). https://doi.org/10.1021/acsami.7b09009
- 41.
S. Gardebjer, A. Bergstrand, A. Idstrom, C. Borstell, S. Naana, L. Nordstierna, A. Larsson, Solid-state NMR to quantify surface coverage and chain length of lactic acid modified cellulose nanocrystals, used as fillers in biodegradable composites. Compos. Sci. Technol. 107, 1–9 (2015). https://doi.org/10.1016/j.compscitech.2014.11.014
- 42.
U. Hemraz, K. A Campbell, S. Burdick, J. Ckless, K. Boluk, Y. Sunasee, Cationic poly(2-aminoethylmethacrylate) and poly(N-(2-aminoethylmethacrylamide) modified cellulose nanocrystals: synthesis, characterization, and cytotoxicity. Biomacromolecules 16, 319–325 (2014). https://doi.org/10.1021/bm501516r
- 43.
C. Li, H. Fan, T. Aziz, C. Bittencourt, L. Wu, D.-Y. Wang, P. Dubois, Biobased epoxy resin with low electrical permissivity and flame retardancy: from environmental friendly high-throughput synthesis to properties. ACS Sustain. Chem. Eng. 6(7), 8856–8867 (2018). https://doi.org/10.1021/acssuschemeng.8b01212
- 44.
M. Rincon-Iglesias, E. Lizundia, D.M. Correia, C.M. Costa, S. Lanceros-Mendez, The role of CNC surface modification on the structural, thermal and electrical properties of poly(vinylidene fluoride) nanocomposites. Cellulose 27(7), 3821–3834 (2020). https://doi.org/10.1007/s10570-020-03067-z
- 45.
D. Yang, X. Peng, L. Zhong, X. Cao, W. Chen, S. Wang, C. Liu, R. Sun, Fabrication of a highly elastic nanocomposite hydrogel by surface modification of cellulose nanocrystals. RSC Adv. 5(18), 13878–13885 (2015). https://doi.org/10.1039/C4RA10748A
- 46.
H. Khanjanzadeh, R. Behrooz, N. Bahramifar, W. Gindl-Altmutter, M. Bacher, M. Edler, T. Griesser, Surface chemical functionalization of cellulose nanocrystals by 3-amino propyltriethoxysilane. Int. J. Biol. Macromol. 106, 1288–1296 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.136
- 47.
L.X. Du, J.W. Wang, Y. Zhang, C.S. Qi, M.P. Wolcott, Z.M. Yu, Preparation and characterization of cellulose nanocrystals from the bio-ethanol residuals. Nanomaterials 7(3), 1–12 (2017). https://doi.org/10.3390/nano7030051
- 48.
H.A. Al-Turaif, Relationship between tensile properties and film formation kinetics of epoxy resin reinforced with nanofibrillated cellulose. Prog. Org. Coat. 76(2–3), 477–481 (2013). https://doi.org/10.1016/j.porgcoat.2012.11.001
- 49.
J.A.M. Ferreira, P.N.B. Reis, J.D.M. Costa, C. Capela, Assessment of the mechanical properties of nanoclays enhanced low T-g epoxy resins. Fibers Polym. 15(8), 1677–1684 (2014). https://doi.org/10.1007/s12221-014-1677-7
- 50.
I.F. Pinheiro, F.V. Ferreira, D.H.S. Souza, R.F. Gouveia, L.M.F. Lona, A.R. Morales, L.H.I. Mei, Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur. Polym. J. 97, 356–365 (2017). https://doi.org/10.1016/j.eurpolymj.2017.10.026
Acknowledgements
This research was funded by the State Key Laboratory of Chemical Engineering, Zhejiang University 310027 Hangzhou, China.
Funding
This research work is not funded by any agency.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
We have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aziz, T., Zheng, J., Jamil, M.I. et al. Enhancement in Adhesive and Thermal Properties of Bio‐based Epoxy Resin by Using Eugenol Grafted Cellulose Nanocrystals. J Inorg Organomet Polym (2021). https://doi.org/10.1007/s10904-021-01942-1
Received:
Accepted:
Published:
Keywords
- Adhesive
- Cellulose nanocrystals
- Coupling agent
- EBSCA: Epoxy resin