Tri Oxometallic Zeolite Composite Nanostructures: New and Efficient Catalyst for Solvent Free Synthesis of Bis (Dihydropyrimidinone) Derivatives

Abstract

The facile chemical synthesis method was used for preparing Bis (dihydropyrimidinone) derivatives through Biginelli condensation reaction of terephthalic aldehyde, 1,3-dicarbonyl compounds and (thio) urea or guanidine with tri metallic Fe–Co–V/Zeolite and Fe–Co–Mo/Zeolite composite nanostructures. The structural functionalities and morphological observations of catalyst were obtained using characterization techniques of field emission scanning electron microscopy, X-ray diffraction, Fourier transfer infrared (FT-IR) spectroscopy and transmission electron microscope. The Bis (dihydropyrimidinone) derivatives confirmed by FT-IR, NMR and mass spectroscopy. Excellent yields of the biginelli products and simple work-up are attractive features of this effective protocol.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

References

  1. 1.

    G. Allaedini, S.M. Tasirin, Chem. Pap. 70, 231–242 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    A. Dehghani, M. Ranjbar, A. Eliassi, J. Inorg. Organomet. Polym. Mater. 28, 585–593 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    S.G. Shinde, M.P. Patil, G.-D. Kim, V.S. Shrivastava, J. Inorg. Organomet. Polym. Mater. 30, 1141–1152 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    X. Du, H. Su, X. Zhang, J. Catal. 383, 103–116 (2020)

    CAS  Article  Google Scholar 

  5. 5.

    J. Bonin, A. Maurin, M. Robert, Coord. Chem. Rev. 334, 184–198 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    C. He, Z. Ma, Q. Wu, Y. Cai, Y. Huang, K. Liu, Y. Fan, H. Wang, Q. Li, J. Qi, Electrochim. Acta 330, 135119 (2020)

    CAS  Article  Google Scholar 

  7. 7.

    S.K. Youn, H.G. Park, J. Phys. Chem. C 117, 18657–18665 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    M. Ngcobo, G.S. Nyamato, S.O. Ojwach, Mol. Catal. 478, 110590 (2019)

    Article  CAS  Google Scholar 

  9. 9.

    W.T. Eckenhoff, Coord. Chem. Rev. 373, 295–316 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    H. Adrienn, H. Zolta’n, V. Ilona, Synth. Commun 36(1), 129–136 (2006)

    Article  CAS  Google Scholar 

  11. 11.

    P. Salehi, M. Dabiri, M.A. Zolfigol, M.A.B. Fard, Heterocycles 60, 2435–2440 (2003)

    CAS  Article  Google Scholar 

  12. 12.

    H. Lin, J. Ding, X. Chen, Z. Zhang, Molecules 5, 1240–1243 (2000)

    CAS  Article  Google Scholar 

  13. 13.

    A. Mobinikhaledi, N. Foroughifar, G. Karimi, Inorg. Metal-Org. Nano-Metal Chem. 37, 279–282 (2007)

    CAS  Article  Google Scholar 

  14. 14.

    M. Kamali, A. Shockravi, M. Saghafi Doost, S.H. Hooshmand, Cogent. Chem. 1, 1081667 (2015)

    Article  CAS  Google Scholar 

  15. 15.

    M. Zendehdel, A. Mobinikhaledi, A. Asgari, J. Incl. Phenom. Macrocycl. Chem. 60, 353–357 (2008)

    CAS  Article  Google Scholar 

  16. 16.

    Z. Ghebache, F. Hamidouche, Z. Safidine, M. Trari, B. Bellal, J. Inorg. Organomet. Polym. Mater. 29, 1548–1558 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    A. Mekki, A. Benmaati, A. Mokhtar, M. Hachemaoui, F. Zaoui, H.H. Zahmani, M. Sassi, S. Hacini, B. Boukoussa, J. Inorg. Organomet. Polym. Mater. 30, 2323–2334 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    P. Sanjeev, G.S. Gokavi, Catal. Commun. 8, 279–284 (2007)

    Article  CAS  Google Scholar 

  19. 19.

    D. Nagarathnam, S.W.B. Miao, M.C. Lagu, K.P. Harrell, C. Gluchowski, J. Med. Chem. 42, 4764–4777 (1999)

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    C.O. Kappe, Tetrahedron 49, 6937–6963 (1993)

    CAS  Article  Google Scholar 

  21. 21.

    G.I. Grover, S. Dzwonczyk, D.M. McMullen, D.E. Normadin, C.S. Parham, P.G. Sleph, S.J. Moreland, J. Cardiovasc. Pharmacol 26, 289–291 (1995)

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    J.C. Barrow, P.G. Nantermet, D. Nagarathnam, C. Forray, J. Med. Chem. 43, 2703–2718 (2000)

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    D.S.L. Bose, H.B. Fatima, J. Org. Chem. 68, 587 (2003)

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    M. Adib, K. Ghanbary, M. Mostofi, M.R. Ganjal, Molecules 11, 649 (2006)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    M.A. Chari, K. Syamasundar, J. Mol. Catal. A 221, 137 (2004)

    CAS  Article  Google Scholar 

  26. 26.

    D. Dallinger, N.Y. Gorobets, C.O. Kappe, Org. Lett. 5, 1205 (2003)

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    E.H. Hu, D.R. Sidler, U.H. Dolling, J. Org. Chem. 63, 3454 (1998)

    CAS  Article  Google Scholar 

  28. 28.

    A. Dondoni, A. Massi, Tetrahedron Lett. 42, 7975–7979 (2001)

    CAS  Article  Google Scholar 

  29. 29.

    I. Saxena, D.C. Borah, J.C. Sarma, Tetrahedron Lett. 46, 1159 (2005)

    CAS  Article  Google Scholar 

  30. 30.

    C.O. Kappe, D.R. Kumar, S. Varma, Synthesis 10, 1799 (1997)

    Google Scholar 

  31. 31.

    H.R. Memarian, M. Soleymani, Ultrason. Sonochem. 18, 745 (2011)

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    D. Alessandro, M. Alessandro, Tetrahedron Lett. 42, 7975 (2001)

    Article  Google Scholar 

  33. 33.

    B.C. Ranu, A.S. Hajra, S. Dey, Org. Process. Res. Develop. 6, 817 (2002)

    CAS  Article  Google Scholar 

  34. 34.

    M. Kidwai, S. Bala, A.D. Mishrav, Ind. J. Chem. B 43, 2485 (2004)

    Google Scholar 

  35. 35.

    F. Xu, X.D. Huang, Y. Lin, Org. Biomol. Chem. 10, 4467 (2012)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    A. Pourjavadi, S.H. Hosseini, R. Soleyman, J. Mol. Catal. A Chem. 365, 55 (2012)

    CAS  Article  Google Scholar 

  37. 37.

    B.B.F. Mirjalili, L. Zamani, S. Afr. J. Chem. 67, 21–26 (2014)

    Google Scholar 

  38. 38.

    D. Girija, H.S. Bhojya Naik, B. Vinay Kumar, C.N. Sudhamani, K.N. Harish, Arab. J. Chem. 12, 420–428 (2019)

    CAS  Article  Google Scholar 

  39. 39.

    G.S.L. Carolina, S. Sandrina, H.G. Ricardo, R.L. Edson, S.S. Ricardo, G.C. Arlene, W.P. Márcio, Chem Cat Chem 6, 3455–3463 (2014)

    Google Scholar 

  40. 40.

    J. Safari, Z. Zarnegar, RSC Adv. 3, 17962–17967 (2013)

    CAS  Article  Google Scholar 

  41. 41.

    B. Nath Mahato, T. Krithiga, Bull Chem. Reac. Eng. Catal. 14(3), 634–645 (2019)

    Article  CAS  Google Scholar 

  42. 42.

    M.H. Zaheri, S. Javanshir, B. Hemmati, Z. Dolatkhah, M. Fardpour, Chem. Cent. J. 12, 108 (2018)

    Article  CAS  Google Scholar 

  43. 43.

    A. Bashti, A.R. Kiasat, Org. Chem. Res. 2(1), 28–38 (2016)

    Google Scholar 

  44. 44.

    A. Maleki, M. Niksefat, J. Rahimi, Z. Hajizadeh, BMC Chem. 13, 19 (2019)

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    E. Nyankson, J. Adjasoo, K. Efavi, J. Yaya, G. Manu, A. Kingsford, R. Yeboah Abrokwah, Sci. Afr. 7, e00257 (2020)

    Google Scholar 

  46. 46.

    M.K. Mohammadi, A. Gutiérrez, P. Hayati, K. Mohammadi, R. Rezaei, Polyhedron 160, 20–34 (2019)

    CAS  Article  Google Scholar 

  47. 47.

    M.K. Mohammadi, R. Khoshnavazi, S. Geravand, M. Karimi, P. Retailleau, A. Masoudiasl, P. Hayati, G. Mahmoudi, J. Coord. Chem. 72(10), 1671–1682 (2019)

    CAS  Article  Google Scholar 

  48. 48.

    M.K. Mohammadi, P. Hayati, S. Jafari, M. Karimi, A. Gutierrez, J. Mol. Struc. 1176, 434–446 (2019)

    CAS  Article  Google Scholar 

  49. 49.

    A.B. Archana, K. Anubha, Int. J. Pharm. Sci. Res. 2(2), 256–267 (2011)

    Google Scholar 

  50. 50.

    E. Pretsch, P. Bühlmann, Structure Determination of Organic Compounds (Springer, Berlin, Heidelberg, 2009).

    Google Scholar 

  51. 51.

    E.A. Abdelrahman, J. Mol. Liq. 253, 72–82 (2018)

    CAS  Article  Google Scholar 

  52. 52.

    P. Sharma, M. Hee Han, C.-H. Cho, J. Nano Mat. 2015, 9 (2015)

    Google Scholar 

  53. 53.

    H.-L. Wang, J.-Y. Cui, W.-F. Jiang, Mater. Chem. Phys. 130, 993–999 (2011)

    CAS  Article  Google Scholar 

  54. 54.

    B. Kwakye-Awuah, D.D. Wemegah, I. Nkrumah, C. Williams, I. Radecka, Int. J. Sci. Res. (IJSR) 2, 26–31 (2013)

    Google Scholar 

  55. 55.

    M.S. Boroglu, M.A. Gurkaynak, Polym. Bull 66, 463–478 (2011)

    CAS  Article  Google Scholar 

  56. 56.

    X. Guo, A. Navrotsky, Microporous Mesoporous Mat 268, 197–201 (2018)

    CAS  Article  Google Scholar 

  57. 57.

    S.C. Larsen, J. Phys. Chem. C 111, 18464–18474 (2007)

    CAS  Article  Google Scholar 

  58. 58.

    M. Tajbakhsh, M. Heidary, R. Hosseinzadeh, Res. Chem. Intermed. 42, 1425–1439 (2016)

    CAS  Article  Google Scholar 

  59. 59.

    M. Juneau, R. Liu, Y. Peng, A. Malge, Z. Ma, D. Porosoff Marc, Chem. Cat. Chem. 12, 1826–1852 (2020)

    CAS  Google Scholar 

  60. 60.

    C.O. Kappe, Acc. Chem. Res. 33, 879–888 (2000)

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    R.V. Patil, J.U. Chavan, D.S. Dalal, V.S. Shinde, G. Beldar Anil, ACS Comb. Sci. 21, 105–148 (2019)

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    S. Ramanavicius, A. Ramanavicius, Sensors 20, 6833 (2020)

    CAS  Article  Google Scholar 

  63. 63.

    W.-Y. Chen, S.-D. Qin, J.-R. Jin, Synth. Comm. 37(1), 37–52 (2007)

    CAS  Article  Google Scholar 

  64. 64.

    H. Yuan, K. Zhang, J. Xia, X. Hu, S. Yuan, Cog. Chem. 3, 1318692 (2017)

    Article  CAS  Google Scholar 

  65. 65.

    S.F. Taheri Hatkehlouei, B. Mirza, S. Soleimani-Amiri, Polycycl. Arom. Compd. (2020). https://doi.org/10.1080/10406638.2020.1781203

    Article  Google Scholar 

  66. 66.

    S. Sayyahi, M. Behvandi, Iran J. Catal. 5(2), 119–122 (2015)

    CAS  Google Scholar 

  67. 67.

    Y. Zhang, B. Wang, X. Zhang, J. Huang, C. Liu, Molecules 20, 3811–3820 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    M. Ghanbarian, S.Y. Shirazi Beheshtiha, M.M. Heravi, M. Mirzaei, V. Zadsirjan, N. Lotfian, J. Clus Sci. 31, 1295–1306 (2020)

    CAS  Article  Google Scholar 

  69. 69.

    S. Rostamnia, A. Morsali, RSC Adv. 4, 10514 (2014)

    CAS  Article  Google Scholar 

  70. 70.

    S. Mouss, J. Lachhe, M. Gruselle, B. Maaten, K. Kriis, T. Kanger, K. Tõnsuaadu, B. Badraoui, Tetrahedron 73(46), 6542–6548 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The current study was partially supported by the Islamic Azad University, Ahvaz Branch. The authors would like to thank the Research Council for their generous support of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazem Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abadi, S.Z.Y., Mohammadi, M.K. & Tavakkoli, H. Tri Oxometallic Zeolite Composite Nanostructures: New and Efficient Catalyst for Solvent Free Synthesis of Bis (Dihydropyrimidinone) Derivatives. J Inorg Organomet Polym (2021). https://doi.org/10.1007/s10904-021-01905-6

Download citation

Keywords

  • Zeolite
  • Synthesis
  • Nanostructures
  • Bis (dihydropyrimidinone)