Dendrimeric Epoxy Resins Based on Hexachlorocyclotriphosphazene as a Reactive Flame Retardant Polymeric Materials: A Review

Abstract

In the present review article current developments on hexachlorocyclotriphosphazene (HCCP) based epoxy resins as reactive flame retardants is surveyed. The cyclotriphosphazene in its monomeric and polymeric forms behave as flame retardants due to the presence of phosphorus (P) and nitrogen (N) atoms. Usually hexachorocyclotriphosphazene based epoxy resins show reasonably low thermal and fire retardant properties therefore some external additives are being added to improved their thermal and fire retardant properties. Present review article describes the collection of previous works published on the flame retardant properties of hexachlorocyclotriphosphazene based epoxy resins. Present article also deals with the surface modification, functionalization and description of various hexachlorocyclotriphosphazene based epoxy resins as thermal and flame retardants.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25

References

  1. 1.

    W. Zhao, W. Zhao, Z. Huang, G. Liu, B. Wu, Tribological performances of epoxy resin composite coatings using hexagonal boron nitride and cubic boron nitride nanoparticles as additives. Chem. Phys. Lett. 732, 136646 (2019)

    Article  CAS  Google Scholar 

  2. 2.

    O. Dagdag, M. El Gouri, A. El Mansouri, A. Outzourhit, A. El Harfi, O. Cherkaoui et al., Rheological and electrical study of a composite material based on an epoxy polymer containing cyclotriphosphazene. Polymers 12, 921 (2020)

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  3. 3.

    R. Hsissou, O. Dagdag, M. Berradi, M. El Bouchti, M. Assouag, A. Elharfi, Development rheological and anti-corrosion property of epoxy polymer and its composite. Heliyon 5, e02789 (2019)

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    O. Dagdag, A. Essamri, L. El Gana, M. El Bouchti, O. Hamed, O. Cherkaoui et al., Synthesis, characterization and rheological properties of epoxy monomers derived from bifunctional aromatic amines. Polym. Bull. 76, 4399–4413 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    O. Dagdag, M. El Bouchti, O. Cherkaoui, O. Hamed, M. El Gouri, S. Dagdag et al., A study on thermal and rheological cure characterization of a sulfur-containing epoxy resin. J. Chem. Techno. Metallurgy 54, 881–888 (2019)

    CAS  Google Scholar 

  6. 6.

    O. Dagdag, A. El Harfi, M. El Gouri, M.E. Touhami, A. Essamri, O. Cherkaoui, Electrochemical impedance spectroscopy (SIE) evaluation of the effect of immersion time of the protective matrix based on a polymer tetra glycidyl of ethylene dianiline (TGEDA) on carbon steel in 3% NaCl. Int J ChemTech Res 9, 390–399 (2016)

    CAS  Google Scholar 

  7. 7.

    R. Hsissou, A. Bekhta, O. Dagdag, A. El Bachiri, M. Rafik, A. Elharfi, Rheological properties of composite polymers and hybrid nanocomposites. Heliyon 6, e04187 (2020)

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    J. Cheng, J. Li, J. Zhang, Curing behavior and thermal properties of trifunctional epoxy resin cured by 4, 4′-diaminodiphenyl sulfone. Express Poly. Lett. 3, 501–509 (2009)

    CAS  Article  Google Scholar 

  9. 9.

    O. Dagdag, R. Hsissou, A. El Harfi, A. Berisha, Z. Safi, C. Verma et al., Fabrication of polymer based epoxy resin as effective anti-corrosive coating for steel: Computational modeling reinforced experimental studies. Surf. Interf. 18, 100454 (2020)

    CAS  Article  Google Scholar 

  10. 10.

    O. Dagdag, A. Berisha, Z. Safi, O. Hamed, S. Jodeh, C. Verma et al., DGEBA-polyaminoamide as effective anti-corrosive material for 15CDV6 steel in NaCl medium: Computational and experimental studies. J. Appl. Polym. Sci. 137, 48402 (2020)

    CAS  Article  Google Scholar 

  11. 11.

    O. Dagdag, A. Berisha, Z. Safi, S. Dagdag, M. Berrani, S. Jodeh, et al., "Highly durable macromolecular epoxy resin as anticorrosive coating material for carbon steel in 3% NaCl: Computational supported experimental studies," Journal of Applied Polymer Science, p. 49003, 2020.

  12. 12.

    O. Dagdag, R. Hsissou, A. Berisha, H. Erramli, O. Hamed, S. Jodeh et al., Polymeric-based epoxy cured with a polyaminoamide as an anticorrosive coating for aluminum 2024–T3 surface: experimental studies supported by computational modeling. J. Bio. Tribo-Corrosion 5, 58 (2019)

    Article  Google Scholar 

  13. 13.

    O. Dagdag, G. Hanbali, B. Khalaf, S. Jodeh, A. El Harfi, A. Deghles, Dual Component Polymeric Epoxy-Polyaminoamide Based Zinc Phosphate Anticorrosive Formulation for 15CDV6 Steel. Coatings 9, 463 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    O. Dagdag, L. El Gana, O. Hamed, S. Jodeh, A. El Harfi, Anticorrosive formulation based of the epoxy resin–polyaminoamide containing zinc phosphate inhibitive pigment applied on sulfo-tartaric anodized AA 7075–T6 in NaCl medium. J. Bio-and Tribo-Corrosion 5, 25 (2019)

    Article  Google Scholar 

  15. 15.

    O. Dagdag, A. El Harfi, L. El Gana, Z. Hlimi, H. Erramli, O. Hamed et al., The role of zinc phosphate pigment in the anticorrosion properties of bisphenol A diglycidyl ether-polyaminoamide coating for aluminum alloy AA2024-T3. J. Bio-and Tribo-Corrosion 5, 7 (2019)

    Article  Google Scholar 

  16. 16.

    C. Jiao, J. Dong, C. Zhang, J. Zhuo, X. Chen, Synthesis and properties of a phosphate ester as curing agent in an epoxy resin system. Iran. Polym. J. 23, 591–598 (2014)

    CAS  Article  Google Scholar 

  17. 17.

    D. Enescu, A. Frache, M. Lavaselli, O. Monticelli, F. Marino, Novel phosphorous–nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene. Polym. Degrad. Stab. 98, 297–305 (2013)

    CAS  Article  Google Scholar 

  18. 18.

    B. Biswas, B.K. Kandola, The effect of chemically reactive type flame retardant additives on flammability of PES toughened epoxy resin and carbon fiber-reinforced composites. Polym. Adv. Technol. 22, 1192–1204 (2011)

    CAS  Article  Google Scholar 

  19. 19.

    X. Tan, L. Zeng, Q. Liao, G. Zhang, X. Wu, J. Wang et al., Model-fitting kinetic analysis of novel phosphorus-containing curing agent for epoxy resin. Thermochim. Acta 657, 197–202 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    N. Lejeune, I. Dez, P. A. Jaffrès, J. F. Lohier, P. J. Madec, and J. Sopkova‐de Oliveira Santos, "Synthesis, crystal structure and thermal properties of phosphorylated cyclotriphosphazenes," European Journal of Inorganic Chemistry, vol. 2008, pp. 138–143, 2008.

  21. 21.

    C.J. Orme, J.R. Klaehn, M.K. Harrup, R.P. Lash, F.F. Stewart, Characterization of 2-(2-methoxyethoxy) ethanol-substituted phosphazene polymers using pervaporation, solubility parameters, and sorption studies. J. Appl. Polym. Sci. 97, 939–945 (2005)

    CAS  Article  Google Scholar 

  22. 22.

    L. Zhu, Y. Zhu, Y. Pan, Y. Huang, X. Huang, X. Tang, Fully crosslinked poly [cyclotriphosphazene-co-(4, 4′-sulfonyldiphenol)] microspheres via precipitation polymerization and their superior thermal properties. Macromol. React. Eng. 1, 45–52 (2007)

    Article  CAS  Google Scholar 

  23. 23.

    S. Krishnamurthy, A. Sau, and M. Woods, "Cyclophosphazenes," in Advances in Inorganic Chemistry and Radiochemistry. vol. 21, ed: Elsevier, 1978, pp. 41–112.

  24. 24.

    C.W. Allen, Regio-and stereochemical control in substitution reactions of cyclophosphazenes. Chem. Rev. 91, 119–135 (1991)

    CAS  Article  Google Scholar 

  25. 25.

    J. Sun, Z. Yu, X. Wang, D. Wu, Synthesis and performance of cyclomatrix polyphosphazene derived from trispiro-cyclotriphosphazene as a halogen-free nonflammable material. ACS Sustainable Chemistry & Engineering 2, 231–238 (2014)

    CAS  Article  Google Scholar 

  26. 26.

    J.Y. Chang, S.B. Rhee, S. Cheong, M. Yoon, Synthesis and thermal reaction of acetylenic group substituted poly (organophosphazenes) and cyclotriphosphazene. Macromolecules 25, 2666–2670 (1992)

    CAS  Article  Google Scholar 

  27. 27.

    M. Heyde, M. Moens, L. Van Vaeck, K.M. Shakesheff, M.C. Davies, E.H. Schacht, Synthesis and characterization of novel poly [(organo) phosphazenes] with cell-adhesive side groups. Biomacromol 8, 1436–1445 (2007)

    CAS  Article  Google Scholar 

  28. 28.

    H.R. Allcock, P.E. Austin, Schiff base coupling of cyclic and high-polymeric phosphazenes to aldehydes and amines: chemotherapeutic models. Macromolecules 14, 1616–1622 (1981)

    CAS  Article  Google Scholar 

  29. 29.

    G.F. Levchik, Y.V. Grigoriev, A.I. Balabanovich, S.V. Levchik, M. Klatt, Phosphorus–nitrogen containing fire retardants for poly (butylene terephthalate). Polym. Int. 49, 1095–1100 (2000)

    CAS  Article  Google Scholar 

  30. 30.

    C.W. Allen, The use of phosphazenes as fire resistant materials. J. Fire Sci. 11, 320–328 (1993)

    CAS  Article  Google Scholar 

  31. 31.

    J.-W. Gu, G.-C. Zhang, S.-L. Dong, Q.-Y. Zhang, J. Kong, Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf. Coat. Technol. 201, 7835–7841 (2007)

    CAS  Article  Google Scholar 

  32. 32.

    J. Cheng, J. Wang, S. Yang, Q. Zhang, S. Huo, Q. Zhang et al., Benzimidazolyl-substituted cyclotriphosphazene derivative as latent flame-retardant curing agent for one-component epoxy resin system with excellent comprehensive performance. Compos. B Eng. 177, 107440 (2019)

    CAS  Article  Google Scholar 

  33. 33.

    M. El Gouri, A. El Bachiri, S.E. Hegazi, M. Rafik, A. El Harfi, Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin. Polym. Degrad. Stab. 94, 2101–2106 (2009)

    Article  CAS  Google Scholar 

  34. 34.

    O. Dagdag, Theoretical studies of cyclophosphazene derivative as corrosion inhibitor for carbon steel in sodium chloride. Der Pharma Chemica 7, 46–54 (2015)

    Google Scholar 

  35. 35.

    H. Zhang, J. Mao, M. Li, Q. Cai, W. Li, C. Huang et al., Design of h-BN@ boronate polymer core-shell nanoplates to simultaneously enhance the flame retardancy and mechanical properties of epoxy resin through the interficial regulation. Compos. A Appl. Sci. Manuf. 130, 105751 (2020)

    CAS  Article  Google Scholar 

  36. 36.

    R. Liu, X. Wang, Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin. Polym. Degrad. Stab. 94, 617–624 (2009)

    CAS  Article  Google Scholar 

  37. 37.

    M.-J. Xu, G.-R. Xu, Y. Leng, B. Li, Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. Polym. Degrad. Stab. 123, 105–114 (2016)

    CAS  Article  Google Scholar 

  38. 38.

    S. Zhang, Y. Li, J. Guo, L. Gu, H. Li, B. Fei et al., Preparation of hexakis (4-aldehyde phenoxy) cyclotriphosphazene grafted kaolinite and its synergistic fire resistance in poly (butylene succinate). Polym. Compos. 41, 1024–1035 (2020)

    CAS  Article  Google Scholar 

  39. 39.

    G.-R. Xu, M.-J. Xu, B. Li, Synthesis and characterization of a novel epoxy resin based on cyclotriphosphazene and its thermal degradation and flammability performance. Polym. Degrad. Stab. 109, 240–248 (2014)

    CAS  Article  Google Scholar 

  40. 40.

    O. Dagdag, M. El Gouri, M. Galai, M. E. Touhami, A. Essamri, and A. Elharfi, "Application of hexa propylene glycol cyclotriphosphazene as corrosion inhibitor for copper in 3% NaCl solution," Der Phar. Chem, vol. 7, 2015.

  41. 41.

    O. Dagdag, A. El Harfi, M. El Gouri, Z. Safi, R.T. Jalgham, N. Wazzan et al., Anticorrosive properties of Hexa (3-methoxy propan-1, 2-diol) cyclotri-phosphazene compound for carbon steel in 3% NaCl medium: gravimetric, electrochemical, DFT and Monte Carlo simulation studies. Heliyon 5, e01340 (2019)

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    O. Dagdag, A. El Harfi, Z. Safi, L. Guo, S. Kaya, C. Verma, et al., "Cyclotriphosphazene based dendrimeric epoxy resin as an anti-corrosive material for copper in 3% NaCl: Experimental and computational demonstrations," Journal of Molecular Liquids, p. 113020, 2020.

  43. 43.

    H. Liu, X. Wang, D. Wu, Novel cyclotriphosphazene-based epoxy compound and its application in halogen-free epoxy thermosetting systems: Synthesis, curing behaviors, and flame retardancy. Polym. Degrad. Stab. 103, 96–112 (2014)

    CAS  Article  Google Scholar 

  44. 44.

    G. Fantin, A. Medici, M. Fogagnolo, P. Pedrini, M. Gleria, R. Bertani et al., Functionalization of poly (organophosphazenes)—III. Synthesis of phosphazene materials containing carbon-carbon double bonds and epoxide groups. Eur. Polymer J. 29, 1571–1579 (1993)

    CAS  Article  Google Scholar 

  45. 45.

    A. Medici, G. Fantin, P. Pedrini, M. Gleria, F. Minto, Functionalization of phosphazenes. 1. Synthesis of phosphazene materials containing hydroxyl groups. Macromolecules 25, 2569–2574 (1992)

    CAS  Article  Google Scholar 

  46. 46.

    Y. Chen-Yang, H. Lee, C. Yuan, A flame-retardant phosphate and cyclotriphosphazene-containing epoxy resin: Synthesis and properties. J. Polym. Sci., Part A: Polym. Chem. 38, 972–981 (2000)

    CAS  Article  Google Scholar 

  47. 47.

    B. Zhao, W.-J. Liang, J.-S. Wang, F. Li, Y.-Q. Liu, Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polym. Degrad. Stab. 133, 162–173 (2016)

    CAS  Article  Google Scholar 

  48. 48.

    H.R. Allcock, C. Kolich, W. Kossa, Pyrolysis of aminophosphazenes. Inorg. Chem. 16, 3362–3364 (1977)

    CAS  Article  Google Scholar 

  49. 49.

    H.R. Allcock, D. Patterson, Phosphorus-nitrogen compounds. 27. Ring-ring and ring-chain equilibration of dimethylphosphazenes. Relation to phosphazene polymerization. Inorg. Chem. 16, 197–200 (1977)

    CAS  Article  Google Scholar 

  50. 50.

    W.-J. Liang, B. Zhao, P.-H. Zhao, C.-Y. Zhang, Y.-Q. Liu, Bisphenol-S bridged penta (anilino) cyclotriphosphazene and its application in epoxy resins: Synthesis, thermal degradation, and flame retardancy. Polym. Degrad. Stab. 135, 140–151 (2017)

    CAS  Article  Google Scholar 

  51. 51.

    J. Liu, J. Tang, X. Wang, D. Wu, Synthesis, characterization and curing properties of a novel cyclolinear phosphazene-based epoxy resin for halogen-free flame retardancy and high performance. RSC Adv. 2, 5789–5799 (2012)

    CAS  Article  Google Scholar 

  52. 52.

    Y. Bai, X. Wang, D. Wu, Novel cyclolinear cyclotriphosphazene-linked epoxy resin for halogen-free fire resistance: synthesis, characterization, and flammability characteristics. Ind. Eng. Chem. Res. 51, 15064–15074 (2012)

    CAS  Article  Google Scholar 

  53. 53.

    J. Cheng, J. Wang, S. Yang, Q. Zhang, Y. Hu, G. Ding et al., Aminobenzothiazole-substituted cyclotriphosphazene derivative as reactive flame retardant for epoxy resin. React. Funct. Polym. 146, 104412 (2020)

    Article  CAS  Google Scholar 

  54. 54.

    C.-S. Wang, M.-C. Lee, Synthesis and properties of epoxy resins containing 2-(6-oxid-6H-dibenz (c, e)(1, 2) oxaphosphorin-6-yl) 1, 4-benzenediol (II). Polymer 41, 3631–3638 (2000)

    CAS  Article  Google Scholar 

  55. 55.

    X. Wang, Y. Hu, L. Song, W. Xing, H. Lu, P. Lv et al., Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 51, 2435–2445 (2010)

    CAS  Article  Google Scholar 

  56. 56.

    L.-J. Qian, L.-J. Ye, G.-Z. Xu, J. Liu, J.-Q. Guo, The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups. Polym. Degrad. Stab. 96, 1118–1124 (2011)

    CAS  Article  Google Scholar 

  57. 57.

    S. Levchik, G. Camino, M. Luda, L. Costa, A. Lindsay, D. Stevenson, Thermal decomposition of cyclotriphosphazenes. I. Alkyl-aminoaryl ethers. J. Appl. Polym. Sci. 67, 461–472 (1998)

    CAS  Article  Google Scholar 

  58. 58.

    M. El Gouri, A. El-Harfi, Modifications chimiques de l’hexachlorocyclotriphosphazène-Préparation de retardateurs de flame et de matériaux polymères ignifuges écologiques (Chemical modification of hexachlorocyclotriphosphazene-Preparation of flame retardants and ecological flame retardant polymers). J. Mat. Environ. Sci. 3, 17–33 (2012)

    Google Scholar 

  59. 59.

    M. Buckingham, A. Lindsay, D. Stevenson, G. Muller, E. Morel, B. Costes et al., Synthesis and formulation of novel phosphorylated flame retardant curatives for thermoset resins. Polym. Degrad. Stab. 54, 311–315 (1996)

    CAS  Article  Google Scholar 

  60. 60.

    D. Kumar, M. Khullar, A.D. Gupta, Synthesis and characterization of novel cyclotriphosphazene-containing poly (ether imide) s. Polymer 34, 3025–3029 (1993)

    CAS  Article  Google Scholar 

  61. 61.

    S. Yang, J. Wang, S. Huo, J. Wang, Y. Tang, Synthesis of a phosphorus/nitrogen-containing compound based on maleimide and cyclotriphosphazene and its flame-retardant mechanism on epoxy resin. Polym. Degrad. Stab. 126, 9–16 (2016)

    CAS  Article  Google Scholar 

  62. 62.

    Y. Fang, J. Miao, X. Yang, Y. Zhu, G. Wang, Fabrication of polyphosphazene covalent triazine polymer with excellent flame retardancy and smoke suppression for epoxy resin. Chem. Eng. J. 385, 123830 (2020)

    CAS  Article  Google Scholar 

  63. 63.

    H. Liu, X. Wang, D. Wu, Preparation, isothermal kinetics, and performance of a novel epoxy thermosetting system based on phosphazene-cyclomatrix network for halogen-free flame retardancy and high thermal stability. Thermochim. Acta 607, 60–73 (2015)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. Dagdag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dagdag, O., Bachiri, A.E., Hamed, O. et al. Dendrimeric Epoxy Resins Based on Hexachlorocyclotriphosphazene as a Reactive Flame Retardant Polymeric Materials: A Review. J Inorg Organomet Polym (2021). https://doi.org/10.1007/s10904-021-01900-x

Download citation

Keywords

  • Epoxy resins
  • Hexachlorocyclotriphosphazene
  • Polymeric materials
  • Thermal and flame retardant properties