Effect of Thermal Annealing on Structure and Optical Properties of Amorphous As30Te64Ga6 Thin Films


The impact of thermal annealing on the structural, linear, and nonlinear optical characteristics of the thermal evaporated As30Te64Ga6 thin films (thickness of 150 nm) was investigated. X-ray diffraction and scanning electron microscope results indicated that the thermally evaporated film was noncrystalline, while the annealed As30Te64Ga6 films were crystalline. The optical constants and parameters were evaluated using a spectrophotometer and measurements were performed at a wavelength of 200–2400 nm. The optical bandgap showed direct and indirect transitions which decreased as the annealing temperature increased up to 433 K and thereafter increased; while the change in the Urbach energy showed a contrary attitude. Linear and nonlinear refractive index, extension coefficient, optical density, optical and electrical conductivities, nonlinear susceptibility and optical surface resistance were found to be greatly influenced by annealing temperature and were also dependent on the energy of the incident waves. The obtained results were needed for a better basic understanding revealing possible optoelectronic applications of the thermally evaporated As30Te64Ga6.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19


  1. 1.

    A. Burian, P. Lecante, A. Mosset, J. Galy, J.M. Tonnerre, D. Raoux, Differential anomalous X-ray scattering studies of amorphous Cd59As41 and Cd26As74. J. Non-Cryst. Solids 212, 23–39 (1997)

    CAS  Article  Google Scholar 

  2. 2.

    X.H. Zhang, J.L. Adam, B. Bureau, in Springer Handbook of Glass. Chalcogenide glasses, ed. by J.D. Musgraves, J. Hu, L. Calvez (Springer, Cham, 2019), pp. 525–552. https://doi.org/10.1007/978-3-319-93728-1_15

  3. 3.

    A.S. Hassanien, H.R. Alamri, I.M. El Radaf, Impact of film thickness on optical properties and optoelectrical parameters of novel CuGaGeSe4 thin films synthesized by electron beam deposition. Opt. Quant. Electron. 52, 1–18 (2020)

    Article  CAS  Google Scholar 

  4. 4.

    N.M. Basfer, S.F. Mansour, F. Al-Hazmi, The influence of Cu2+ substitution on theoretical and experimental magneto-mechanical properties of Mg–Zn nanoferrites. J. Mater. Sci. Mater. Electron. 31, 10889–10902 (2020)

  5. 5.

    H.M. Gomaa, I.S. Ali, A.S. Morsy, M.I. Sayyed, Linear/nonlinear optical parameters of niobium-free and niobium-doped bismuth borate glass samples. Appl. Phys. A 126, 384 (2020)

    CAS  Article  Google Scholar 

  6. 6.

    J.A.M. Abdulwahed, A.T. Nagat, S.E. Al Garni, S.R. Al-Harbi, S.A. Hussein, M.H. Al-Husuny, Investigation of the switching phenomena in some thallium based III-V-VI2 ternary chalcogenides single crystal. J. Ovonic Res. 12, 9–22 (2016)

    CAS  Google Scholar 

  7. 7.

    K.S. Albarkaty, E. Kumi-Barimah, C. Craig, D. Hewak, G. Jose, J. Chandrappan, Erbium-doped chalcogenide glass thin film on silicon using femtosecond pulsed laser with different deposition temperatures. Appl. Phys. A 125, 1–8 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    A.M. Abd-Elnaiem, R.M. Hassan, H.R. Alamri, H.S. Assaedi, Comparative investigation of linear and nonlinear optical properties of As–70 at% Te thin films: influence of Ga content. J. Mater. Sci. Mater. Electron. 31, 13204–13218 (2020)

    CAS  Article  Google Scholar 

  9. 9.

    S. Naghizade, S.M. Sattari-Esfahlan, An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. J. Opt. Commun. 41, 37–43 (2019)

    Article  Google Scholar 

  10. 10.

    F.A. Al-Agel, S.A. Khan, E.A. Al-Arfaj, A.A. Al-Ghamdi, Kinetics of non-isothermal crystallization and glass transition phenomena in Ga10Se87Pb3 and Ga10Se84Pb6 chalcogenide glasses by DSC. J. Non-Cryst. Solids 358, 564–570 (2012)

    CAS  Article  Google Scholar 

  11. 11.

    H. Endo, H. Hoshino, H. Ikemoto, T. Miyanaga, Semiconductor-metal transition in liquid As-Te mixtures. J. Phys. Condens. Matter 12, 6077–6099 (2000)

    CAS  Article  Google Scholar 

  12. 12.

    A.M. Abd-Elnaiem, M. Mohamed, R.M. Hassan, A.A. Abu-Sehly, M.A. Abdel-Rahim, M.M. Hafiz, Influence of annealing temperature on the structural and optical properties of As30Te70 thin films. Mater. Sci. Pol. 35, 335–345 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    A.M. Abd-Elnaiem, S. Moustafa, M.A. Abdel-Rahim, Comparative investigation of electronic properties of As-70 at.%Te thin films: influence of Ga doping and annealing temperature. J. Non-Cryst. Solids 540, 120062 (2020)

    CAS  Article  Google Scholar 

  14. 14.

    A.M. Abd-Elnaiem, S. Moustafa, Optical properties of annealed As30Te67Ga3 thin films grown by thermal evaporation. Process. Appl. Ceram. 12, 209–217 (2018)

    CAS  Article  Google Scholar 

  15. 15.

    M. Dongol, Optical absorption and structural properties of as-deposited and thermally annealed As–Te–Ga thin films. Egypt. J. Solids 25, 33–47 (2002)

    Google Scholar 

  16. 16.

    M. Dongol, M.M. Hafiz, M. Abou-Zied, A.F. Elhady, Effect of composition on the electrical and structural properties of As–Te–Ga thin films. Appl. Surf. Sci. 185, 1–10 (2001)

    CAS  Article  Google Scholar 

  17. 17.

    V.C. Selvaraju, S. Asokan, V. Srinivasan, Electrical switching studies on As40Te60-xSex and As35Te65-xSex glasses. Appl. Phys. A 77, 149–153 (2003)

    CAS  Article  Google Scholar 

  18. 18.

    N. Manikandan, S. Asokan, Network topological thresholds in gallium doped As–Te glasses—electrical and thermal investigations. J. Non-Cryst. Solids 353, 1247–1250 (2007)

    CAS  Article  Google Scholar 

  19. 19.

    T. Usuki, O. Uemura, S. Konno, Y. Kameda, M. Sakurai, Structural and physical properties of Ag–As–Te glasses. J. Non-Cryst. Solids 293, 799–805 (2001)

    Article  Google Scholar 

  20. 20.

    G.A. Amin, S.M. El-Sayed, H.M. Saad, F.M. Hafez, M. Abd-El-Rahman, The radiation effect on optical and morphological properties of Ag–As–Te thin films. Radiat. Meas. 42, 400–406 (2007)

    CAS  Article  Google Scholar 

  21. 21.

    Z. Borisova, Glassy Semiconductors (Springer, US, 2013). https://doi.org/10.1007/978-1-4757-0851-6

    Google Scholar 

  22. 22.

    B.T. Kolomiets, B.V. Pavlov, Change in forbidden-band width of Arsenic chalcogenides in transition from glass to crystal. Sov. Phys. Semicond. 1, 350 (1967)

    Google Scholar 

  23. 23.

    F. Kosek, Z. Cimpl, M.D. Mikhailov, E.A. Karpova, Electrical and optical properties of the As–Te–In and Ge–Se–In chalcogenide systems. J. Non-Cryst. Solids 86, 265–270 (1986)

    CAS  Article  Google Scholar 

  24. 24.

    M.M. Hafiz, A.H. Moharram, A.A. Abu-Sehly, The effect of silver incorporation on the properties of co-evaporated arsenic telluride thin films. Appl. Surf. Sci. 115, 203–210 (1997)

    CAS  Article  Google Scholar 

  25. 25.

    S.M. El-Sayed, H.M. Saad, Effect of composition and forming parameter on evaporated Ag–As–Te thin films. Mater. Chem. Phys. 107, 39–43 (2008)

    CAS  Article  Google Scholar 

  26. 26.

    M.A. Abdel-Rahim, Annealing dependence of optical and electrical properties of Ga8As46Te46 thin films. J. Phys. Chem. Solids 60, 29–39 (1999)

    CAS  Article  Google Scholar 

  27. 27.

    A.M. Abd-Elnaiem, M. Mohamed, R.M. Hassan, M.A. Abdel-Rahim, A.A. Abu-Sehly, M.M. Hafiz, Structural and optical characterization of annealed As30Te60Ga10 thin films prepared by thermal evaporation technique. Mater. Sci. Pol. 36, 193–202 (2018)

    CAS  Article  Google Scholar 

  28. 28.

    Gh. Abbady, A. Qasem, A.M. Abd-Elnaiem, Optical parameters and electronic properties for the transition of the amorphous-crystalline phase in Ge20Te80 thin films. J. Alloys Compd. 842, 155705 (2020)

  29. 29.

    J.R. Eifert, E.A. Peretti, The phase diagram of the system tellurium/arsenic. J. Mater. Sci. 3, 293–296 (1968)

    CAS  Article  Google Scholar 

  30. 30.

    P.G. Rustamov, B.K. Babaeva, V.B. Cherstvova, in Chalcogenides [in Russian], Kiev (1974) pp. 106–109

  31. 31.

    A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939)

    CAS  Article  Google Scholar 

  32. 32.

    F.T.L. Muniz, M.A.R. Miranda, C.M. dos Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. A 72, 385–390 (2016)

    CAS  Article  Google Scholar 

  33. 33.

    U. Holzwarth, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation.’ Nat. Nanotechnol. 6, 534–534 (2011)

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    T.S. Moss, Optical Properties of Semi-Conductors (Butterworths Scientific, London, 1959).

    Google Scholar 

  35. 35.

    E. Márquez, J.B. Ramirez-Malo, J. Fernández-Peña, R. Jiménez-Garay, P.J.S. Ewen, A.E. Owen, On the optical properties of wedge-shaped thin films of Ag-photodoped As30S70 glass. Opt. Mater. 2, 143–150 (1993)

    Article  Google Scholar 

  36. 36.

    A.M. Abd-Elnaiem, A.Z. Mahmoud, S. Moustafa, Structural and optical properties of thermally evaporated and annealed Ge20Se76Sn4 thin films. Opt. Mater. 111, 110607 (2020)

    Article  CAS  Google Scholar 

  37. 37.

    E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903–0922 (1970)

    CAS  Article  Google Scholar 

  38. 38.

    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    CAS  Article  Google Scholar 

  39. 39.

    M.M. Hafiz, A.A. Othman, M.M. El-Nahass, A.T. Al-Motasem, Composition and thermal-induced effects on the optical constants of Ge20Se80−xBix thin films. Physica B 390, 348–355 (2007)

    CAS  Article  Google Scholar 

  40. 40.

    E.R. Shaaban, N. Afify, A. El-Taher, Effect of film thickness on microstructure parameters and optical constants of CdTe thin films. J. Alloys Compd. 482, 400–404 (2009)

    CAS  Article  Google Scholar 

  41. 41.

    V.O. Balitska, O.I. Shpotyuk, Radiation-induced structural transformations in vitreous chalcogenide semiconductors. J. Non-Cryst. Solids 227, 723–727 (1998)

    Article  Google Scholar 

  42. 42.

    S.H. Wemple, M. Didomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971)

    Article  Google Scholar 

  43. 43.

    M.M. Abd El-Raheem, Optical properties of AsSeTl thin films deposited by e-beam evaporation. J. Optoelectron. Adv. Mater. 11, 408–413 (2009)

    CAS  Google Scholar 

  44. 44.

    M. Rashad, H.A. Saudi, H.M.H. Zakaly, S.A.M. Issa, A.M. Abd-Elnaiem, Control optical characterizations of Ta+5–doped B2O3–Si2O–CaO–BaO glasses by irradiation dose. Opt. Mater. 112, 110613 (2021)

    CAS  Article  Google Scholar 

  45. 45.

    H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    CAS  Google Scholar 

  46. 46.

    K. Tanaka, Optical properties and photoinduced changes in amorphous As–S films. Thin Solid Films 66, 271–279 (1980)

    CAS  Article  Google Scholar 

  47. 47.

    F. Yakuphanoglu, C. Viswanathan, Electrical conductivity and single oscillator model properties of amorphous CuSe semiconductor thin film. J. Non-Cryst. Solids 353, 2934–2937 (2007)

    CAS  Article  Google Scholar 

  48. 48.

    L. Tsang, J.A. Kong, K.H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2004).

    Google Scholar 

  49. 49.

    M.M. Hafiz, H. Mahfoz Kotb, M.A. Dabban, A.Y. Abdel-Latif, Optical properties of Cd20Se80−xMx (M: Zn, In, and Sn) thin film alloys. Opt. Laser Technol. 49, 188–195 (2013)

    CAS  Article  Google Scholar 

  50. 50.

    M.M. El-Nahass, H.S. Soliman, A.A. Hendi, Sh. El-Gamdy, Effect of annealing on the structural and optical properties of tertracyanoquinodimethane thin films. Aust. J. Basic Appl. Sci. 5, 145–156 (2011)

    CAS  Google Scholar 

  51. 51.

    V. Kumar, B.S.R. Sastry, Heat of formation of ternary chalcopyrite semiconductors. J. Phys. Chem. Solids 66, 99–102 (2005)

    CAS  Article  Google Scholar 

  52. 52.

    D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093 (1962)

    CAS  Article  Google Scholar 

  53. 53.

    J.D. Patterson, B.C. Bailey, in Solid-State Physics. Optical properties of solids (Springer, Cham, 2018), pp. 649–704. https://doi.org/10.1007/978-3-319-75322-5_10

  54. 54.

    R.H. French, H. Müllejans, D.J. Jones, Optical properties of aluminum oxide: determined from vacuum ultraviolet and electron energy-loss spectroscopies. J. Am. Ceram. Soc. 81, 2549–2557 (1998)

    CAS  Article  Google Scholar 

  55. 55.

    R.H. French, Origins and applications of London dispersion forces and Hamaker constants in ceramics. J. Am. Ceram. Soc. 83, 2117–2146 (2000)

    CAS  Article  Google Scholar 

  56. 56.

    S.K. Tripathy, Refractive indices of semiconductors from energy gaps. Opt. Mater. 46, 240–246 (2015)

    CAS  Article  Google Scholar 

  57. 57.

    T.S. Moss, A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors. Proc. Phys. Soc. B 63, 167 (1950)

    Article  Google Scholar 

  58. 58.

    N.M. Ravindra, S. Auluck, V.K. Srivastava, On the Penn gap in semiconductors. Physica Status Solidi b 93, K155–K160 (1979)

    CAS  Article  Google Scholar 

  59. 59.

    P. Herve, L.K.J. Vandamme, General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technnol. 35, 609–615 (1994)

    CAS  Article  Google Scholar 

  60. 60.

    P.J.L. Herve, L.K.J. Vandamme, Empirical temperature dependence of the refractive index of semiconductors. J. Appl. Phys. 77, 5476–5477 (1995)

    CAS  Article  Google Scholar 

  61. 61.

    P. Sharma, S.C. Katyal, Linear and nonlinear refractive index of As–Se–Ge and Bi doped As–Se–Ge thin films. J. Appl. Phys. 107, 113527 (2010)

    Article  CAS  Google Scholar 

  62. 62.

    C.C. Wang, Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045 (1970)

    Article  Google Scholar 

  63. 63.

    M. Reidinger, M. Rydzek, C. Scherdel, M. Arduini-Schuster, J. Manara, Low-emitting transparent coatings based on tin doped indium oxide applied via a sol–gel routine. Thin Solid Films 517, 3096–3099 (2009)

    CAS  Article  Google Scholar 

Download references


The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (20UQU0079DSR).

Author information



Corresponding author

Correspondence to Hasan S. Assaedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassan, R.M., Mahmoud, A.Z., Abdel-Rahim, M.A. et al. Effect of Thermal Annealing on Structure and Optical Properties of Amorphous As30Te64Ga6 Thin Films. J Inorg Organomet Polym (2021). https://doi.org/10.1007/s10904-021-01897-3

Download citation


  • Thin films
  • Chalcogenide glass
  • As–Te–Ga
  • Structural
  • Optical
  • Dispersion parameters