Structural and Magnetic Tuning of LaFeO3 Orthoferrite Substituted Different Rare Earth Elements to Optimize Their Technological Applications

Abstract

Lanthanum partially substituted rare earth (RE) elements to form RE0.7La0.3FeO3; RE = Ce, Pr, Nd, Sm and Gd) nanoparticles. They were synthesized using the citrate–nitrate auto-combustion method. The crystal structure and microstructure were refined by applying Rietveld profile refinements using the Maud Program. The morphology, magnetic and optical properties of the inspected samples have been explored using HRTEM, VSM, and UV–Vis diffuse reflectance, respectively. The prepared-samples distortion increases as the substituted RE ionic radius decreases. Iron spins of RE orthoferrite samples are known to be ordered Anti-ferromagnetically (AFM). They also possess weak ferromagnetism due to the Dzyaloshinskii-Moriya interaction. This feeble ferromagnetism is reflected in their soft behavior, whereas Sm0.7La0.3FeO3 sample exhibits the butterfly shape hysteresis loop. The remnant magnetization, saturation magnetization, and coercivity are relatively small, but sometimes impressively, enhanced through Lanthanum-rare-earth substitution. Introducing rare earth ions into LaFeO3 decreases the Fe–O–Fe angle and the consequent reduction of the super exchange interaction. In particular, the coercivity of Sm0.7La0.3FeO3 is remarkably improved relative to the parent sample. It has the largest coercivity of all the prepared nanoparticles. Due to the aforementioned substitution, a slight reflectance edge red shift is observed in the spectra. The relation between the magnetic properties of the investigated samples and the ionic radii of RE was investigated and discussed. The experimental results of this work can provide fundamental support for the research and development of multiferroic materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Caculated from ICsD using POWD-12 +  +, (1997).

References

  1. 1.

    N.T. Thuy, D. Le Minh, Size effect on the structural and magnetic properties of nanosized perovskite LaFeO3 prepared by different methods. Adv. Mater. Sci. Eng. (2012). https://doi.org/10.1155/2012/380306

    Article  Google Scholar 

  2. 2.

    N.N. Toan, S. Saukko, V. Lantto, Gas sensing with semiconducting perovskite oxide LaFeO3. Phys. B 327, 279–282 (2003). https://doi.org/10.1016/S0921-4526(02)01764-7

    CAS  Article  Google Scholar 

  3. 3.

    G. Martinelli, M.C. Carotta, M. Ferroni, Y. Sadaoka, E. Traversa, Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sens. Actuators B 55, 99–110 (1999). https://doi.org/10.1016/S0925-4005(99)00054-4

    CAS  Article  Google Scholar 

  4. 4.

    B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345–352 (2001). https://doi.org/10.1038/35104620

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    N. Singh, J.Y. Rhee, S. Auluck, Electronic and magneto-optical properties of rare-earth orthoferrites RFeO3 (R = Y, Sm, Eu, Gd, and Lu). J. Korean Phy. Soc. 53(2), 806–811 (2008)

    CAS  Article  Google Scholar 

  6. 6.

    M.J. Carey, S. Maat, P. Rice, R.F.C. Farrow, R.F. Marks, A. Kellock, P. Nguyen, B.A. Gurney, Spin valves using insulating cobalt ferrite exchange-spring pinning layers. Appl. Phys. Lett. 81, 1044–1046 (2002). https://doi.org/10.1063/1.1494859

    CAS  Article  Google Scholar 

  7. 7.

    E.E. Ateia, A.T. Mohamed, M. Morsy, Humidity sensor applications based on mesopores LaCoO3. J. Mater. Sci. Mater. Electron. 30, 19254–19261 (2019). https://doi.org/10.1007/s10854-019-02284-y

    CAS  Article  Google Scholar 

  8. 8.

    X. Li, C. Tang, M. Ai, L. Dong, Z. Xu, Controllable synthesis of pure-phase rare-earth orthoferrites hollow spheres with a porous shell and their catalytic performance for the CO+NO reaction. Chem. Mater. 22, 4879–4889 (2010). https://doi.org/10.1021/cm101419w

    CAS  Article  Google Scholar 

  9. 9.

    H. Yang, J.X. Zhang, G.J. Lin, T. Xian, J.L. Jiang, Preparation, characterization and photocatalytic properties of terbium orthoferrite nanopowder. Adv. Powder Technol. 24, 242–245 (2013). https://doi.org/10.1016/j.apt.2012.06.009

    CAS  Article  Google Scholar 

  10. 10.

    R. Maity, A.P. Sakhya, A. Dutta, T.P. Sinha, Investigation of concentration dependent electrical and photocatalytic properties of Mn doped SmFeO3. Mater. Chem. Phys. 223, 78–87 (2019). https://doi.org/10.1016/j.matchemphys.2018.10.038

    CAS  Article  Google Scholar 

  11. 11.

    R. Dhinesh Kumar, R. Jayavel, Facile hydrothermal synthesis and characterization of LaFeO3 nanospheres for visible light photocatalytic applications. J. Mater. Sci. Mater. Electron. 25, 3953–3961 (2014). https://doi.org/10.1007/s10854-014-2113-x

    CAS  Article  Google Scholar 

  12. 12.

    S. Manzoor, S. Husain, Influence of Zn doping on structural, optical and dielectric properties of LaFeO 3. Mater. Res. Express. 5, 055009 (2018). https://doi.org/10.1088/2053-1591/aabf6c

    CAS  Article  Google Scholar 

  13. 13.

    W. Sławiński, R. Przeniosło, I. Sosnowska, E. Suard, Spin reorientation and structural changes in NdFeO3. J. Phys. Condens. Matter. 17, 4605–4614 (2005). https://doi.org/10.1088/0953-8984/17/29/002

    CAS  Article  Google Scholar 

  14. 14.

    E.E. Ateia, D.E. El-Nashar, R. Ramadan, M.F. Shokry, Synthesis and characterization of EPDM/ferrite nanocomposites. J. Inorg. Organomet. Polym. Mater. 30, 1041–1048 (2019). https://doi.org/10.1007/s10904-019-01237-6

    CAS  Article  Google Scholar 

  15. 15.

    K. Zhang, K. Xu, X. Liu, Z. Zhang, Z. Jin, X. Lin, B. Li, Resolving the spin reorientation and crystal-field transitions in Tm FeO3 with terahertz transient. Sci. Rep. (2016). https://doi.org/10.1038/srep23648

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    S. Cao, H. Zhao, B. Kang, J. Zhang, W. Ren, Temperature induced spin switching in SmFeO3 single crystal. Sci. Rep. 4, 5960 (2014). https://doi.org/10.1038/srep05960

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    M.A. Gabal, F. Al-Solami, Y.M. Al Angari, A.A. Ali, A.A. Al-Juaid, K. Wei Huang, M. Alsabban, Auto-combustion synthesis and characterization of perovskite-type LaFeO3 nanocrystals prepared via different routes. Ceram. Int. 45, 16530–16539 (2019). https://doi.org/10.1016/j.ceramint.2019.05.187

    CAS  Article  Google Scholar 

  18. 18.

    L. Lutterotti, P. Scardi, P. Maistrelli, LS1—a computer program for simultaneous refinement of material structure and microstructure. J. Appl. Crystallogr. 25, 459–462 (1992). https://doi.org/10.1107/S0021889892001122

    Article  Google Scholar 

  19. 19.

    H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151–152 (1967). https://doi.org/10.1107/s0365110x67000234

    CAS  Article  Google Scholar 

  20. 20.

    M. Marezio, P.D. Dernier, The bond lengths in LaFeO3. Mater. Res. Bull. 6, 23–29 (1971). https://doi.org/10.1016/0025-5408(71)90155-3

    CAS  Article  Google Scholar 

  21. 21.

    S.C. Parida, S.K. Rakshit, Z. Singh, Heat capacities, order-disorder transitions, and thermodynamic properties of rare-earth orthoferrites and rare-earth iron garnets. J. Solid State Chem. 181, 101–121 (2008). https://doi.org/10.1016/j.jssc.2007.11.003

    CAS  Article  Google Scholar 

  22. 22.

    M. Eibschütz, S. Shtrikman, D. Treves, Mössbauer studies of Fe57 in orthoferrites. Phys. Rev. 156, 562–577 (1967). https://doi.org/10.1103/PhysRev.156.562

    Article  Google Scholar 

  23. 23.

    B.Y.R.D. Shannon, M. H, N. H. Baur, O.H. Gibbs, M. Eu, V. Cu, Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides central research and development Department, Experimental Station , E. L Du Pont de Nemours The effective ionic radii of Shannon & Prewitt [Acta, (1976).

  24. 24.

    M.A. Ahmed, N.G. Imam, M.K. Abdelmaksoud, Y.A. Saeid, Magnetic transitions and butterfly-shaped hysteresis of Sm-Fe-Al-based perovskite-type orthoferrite. J. Rare Earths. 33, 965–971 (2015). https://doi.org/10.1016/S1002-0721(14)60513-5

    CAS  Article  Google Scholar 

  25. 25.

    R.D. Shannon, Revised effective ionic radii in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  26. 26.

    G. Pranami, Understanding nanoparticle aggregation. Grad. Theses Diss. 10859, 1–140 (2009)

    Google Scholar 

  27. 27.

    E.E. Ateia, F.S. Soliman, Multiferroic properties of Gd/Er doped chromium ferrite nano sized particles synthesized by citrate auto combustion method. Mater. Sci. Eng. B 244, 29–37 (2019). https://doi.org/10.1016/j.mseb.2019.04.016

    CAS  Article  Google Scholar 

  28. 28.

    H. Gu, K. Xu, Z. Yang, C.K. Chang, B. Xu, Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles-a potential candidate for bimodal anticancer therapy. Chem. Commun. (Camb). (2005). https://doi.org/10.1039/b507779f

    Article  PubMed  Google Scholar 

  29. 29.

    R. Abazari, S. Sanati, Perovskite LaFeO3 nanoparticles synthesized by the reverse microemulsion nanoreactors in the presence of aerosol-OT: morphology, crystal structure, and their optical properties. Superlattices Microstruct. 64, 148–157 (2013). https://doi.org/10.1016/j.spmi.2013.09.017

    CAS  Article  Google Scholar 

  30. 30.

    P. Mehdizadeh, O. Amiri, S. Rashki, M. Salavati-Niasari, M. Salimian, L.K. Foong, Effective removal of organic pollution by using sonochemical prepared LaFeO3 perovskite under visible light. Ultrason. Sonochem. 61, 104848 (2020). https://doi.org/10.1016/j.ultsonch.2019.104848

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    E. Omari, M. Omari, Cu-doped GdFeO3 perovskites as electrocatalysts for the oxygen evolution reaction in alkaline media. Int. J. Hydrogen Energy. 44, 28769–28779 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.088

    CAS  Article  Google Scholar 

  32. 32.

    J. Sheikh, S.A. Acharya, U.P. Deshpande, Ce-doping effect on modulation of spin-exchange interaction and dielectric behaviour of nanostructured LaFeO3 orthoferrites. Mater. Chem. Phys. 242, 122457 (2020). https://doi.org/10.1016/j.matchemphys.2019.122457

    CAS  Article  Google Scholar 

  33. 33.

    S. Husain, A.O.A. Keelani, W. Khan, Influence of Mn substitution on morphological, thermal and optical properties of nanocrystalline GdFeO3 orthoferrite. Nano-Struct. Nano-Objects. 15, 17–27 (2018). https://doi.org/10.1016/j.nanoso.2018.03.002

    CAS  Article  Google Scholar 

  34. 34.

    Q. Lin, X. Yang, J. Lin, Z. Guo, Y. He, The structure and magnetic properties of magnesium-substituted LaFeO3 perovskite negative electrode material by citrate sol-gel. Int. J. Hydrogen Energy. 43, 12720–12729 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.156

    CAS  Article  Google Scholar 

  35. 35.

    R.J. Harrison, A. Putnis, Magnetic properties of the magnetite-spinel solid solution: saturation magnetization and cation distributions. Am. Mineral. 80, 213–221 (1995). https://doi.org/10.2138/am-1995-3-402

    CAS  Article  Google Scholar 

  36. 36.

    T.S. Sudandararaj, G. Sathish Kumar, M. Dhivya, R.D. Eithiraj, I.B.S. Banu, Band structure calculation and rietveld refinement of nanoscale GdFeO3 with affirmation of Jahn Teller’s distortion on electric and magnetic properties. J. Alloys Compd. 783, 393–398 (2019). https://doi.org/10.1016/j.jallcom.2018.11.205

    CAS  Article  Google Scholar 

  37. 37.

    Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, H. Yang, Q. Liu, Q. Liu, F. Ye, F. Ye, Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J. Alloys Compd. 583, 21–31 (2014). https://doi.org/10.1016/j.jallcom.2013.08.129

    CAS  Article  Google Scholar 

  38. 38.

    A.-W. Xu, Y. Gao, H.-Q. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal. 207, 151–157 (2002). https://doi.org/10.1006/jcat.2002.3539

    CAS  Article  Google Scholar 

  39. 39.

    B. Bombik, J. Leśniewska, A.W. Mayer, Pacyna, Crystal structure of solid solutions REFe1-x(Al or Ga)xO3 (RE = Tb, Er, Tm) and the correlation between superexchange interaction Fe+3-O-2-Fe+3 linkage angles and Néel temperature. J. Magn. Magn. Mater. 257, 206–219 (2003). https://doi.org/10.1016/S0304-8853(02)01172-1

    CAS  Article  Google Scholar 

  40. 40.

    S. Kobayashi, H. Ueda, C. Michioka, K. Yoshimura, Competition between the direct exchange interaction and superexchange interaction in layered compounds LiCrSe2, LiCrTe2, and NaCrTe2 with a triangular lattice. Inorg. Chem. 55, 7407–7413 (2016). https://doi.org/10.1021/acs.inorgchem.6b00610

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    E.E. Ateia, M.K. Abdelmaksoud, M.M. Arman, A.S. Shafaay, Comparative study on the physical properties of rare-earth-substituted nano-sized CoFe2O4. Appl. Phys. A 126, 1–10 (2020). https://doi.org/10.1007/s00339-020-3282-5

    CAS  Article  Google Scholar 

  42. 42.

    A. Jaiswal, R. Das, K. Vivekanand, T. Maity, P.M. Abraham, S. Adyanthaya, Magnetic and dielectric properties and Raman spectroscopy of GdCrO3 nanoparticles. J Appl Phys. (2014). https://doi.org/10.1063/1.3275926

    Article  Google Scholar 

  43. 43.

    R.J. Wiglusz, K. Kordek, M. Małecka, A. Ciupa, M. Ptak, R. Pazik, P. Pohl, D. Kaczorowski, A new approach in the synthesis of La1−xGdxFeO3 perovskite nanoparticles—structural and magnetic characterization. Dalt. Trans. 44, 20067–20074 (2015). https://doi.org/10.1039/C5DT03378K

    CAS  Article  Google Scholar 

  44. 44.

    R. Jaiswal, S. Das, P. Adyanthaya, Poddar, Surface effects on morin transition, exchange bias, and enchanced spin reorientation in chemically synthesized DyFeO3 nanoparticles. J. Phys. Chem. C. 115, 2954–2960 (2011). https://doi.org/10.1021/jp109313w

    CAS  Article  Google Scholar 

  45. 45.

    G. Herzer, Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans. Magn. 25, 3327–3329 (1989). https://doi.org/10.1109/20.42292

    CAS  Article  Google Scholar 

  46. 46.

    E.E. Ateia, M.M. Arman, E. Badawy, Role of coupling divalent cations on the physical properties of—SmFeO 3 prepared by citrate auto—combustion technique. Appl. Phys. A. 125, 1–7 (2019). https://doi.org/10.1007/s00339-019-2795-2

    CAS  Article  Google Scholar 

  47. 47.

    Y. Song, W. Yin, Y. Wang, J. Zhang, Y. Wang, R. Wang, J. Han, W. Wang, S.V. Nair, H.E. Ruda, Magneto-plasmons in periodic nanoporous structures. Sci. Rep. 4, 30–32 (2014). https://doi.org/10.1038/srep04991

    CAS  Article  Google Scholar 

  48. 48.

    L. Tauxe, H.N. Bertram, C. Seberino, Physical interpretation of hysteresis loops: Micromagnetic modeling of fine particle magnetite. Geochem. Geophys. Geosyst. (2002). https://doi.org/10.1029/2001GC000241

    Article  Google Scholar 

  49. 49.

    C.-H. Huang, Rare earth coordination chemistry : fundamentals and applications, (2010). http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=818626.

  50. 50.

    S.D. Barrett, S.S. Dhesi, Introduction to the rare earths. Struct. Rare-Earth Met. Surf. (2001). https://doi.org/10.1142/9781848161733_0001

    Article  Google Scholar 

  51. 51.

    L. Yang, B. Kruse, Revised Kubelka-Munk theory I Theory and application. J. Opt. Soc. Am. A 21, 1933 (2004). https://doi.org/10.1364/josaa.21.001933

    Article  Google Scholar 

  52. 52.

    W.E. Vargas, G.A. Niklasson, Applicability conditions of the Kubelka-Munk theory. Appl. Opt. 36, 5580 (1997). https://doi.org/10.1364/ao.36.005580

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    R. He, B. Tang, C. Ton-That, M. Phillips, T. Tsuzuki, Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation. J. Nanopart. Res. 15, 6 (2013). https://doi.org/10.1007/s11051-013-2030-6

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ebtesam E. Ateia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Ismail, H., Elshimy, H. et al. Structural and Magnetic Tuning of LaFeO3 Orthoferrite Substituted Different Rare Earth Elements to Optimize Their Technological Applications. J Inorg Organomet Polym (2021). https://doi.org/10.1007/s10904-021-01887-5

Download citation

Keywords

  • Perovskite
  • Multiferroic
  • Orthoferrite
  • Citrate method
  • Antiferromagnetic