Abstract
Sustainable energy storage system requires high-performance rechargeable batteries with earth-abundant elements and cost-effective electrodes. Prussian blue (PB) and its analogs (PBAs) are a large family of materials with open frameworks. Benefiting from nanoarchitectonics, the PBAs are receiving great attention as cathodic materials for various rechargeable batteries. In this review, we present a general summary and evaluation on the recent advances of PBAs for the rechargeable batteries applications. The general synthetic methods and the chemical properties of PBAs have also been discussed. This review aims to provide a brief outlook on the current and future research strategies of PBAs in the electrochemical energy storage.
Graphic Abstract

This is a preview of subscription content, access via your institution.

Copyright 2019, Royal Society of Chemistry) b Schematic of reaction mechanism of yolk-shell structured K0.86Mn[Fe(CN)6]0.74·2.35H2O. (Reprinted with permission [50] Copyright 2019, Elsevier)


Copyright 2019, Elsevier). b Na1.38Mn[Fe(CN)6]0.92∙□0.08·2.57H2O. (Reprinted with permission [67] Copyright 2019, Wiley)

Copyright 2019, Elsevier). b Diagrammatic phase transition of rhombohedral Na1.34Ni[Fe(CN)6]0.81. (Reprinted with permission [78] Copyright 2019, American Chemical Society) (c) Monoclinic phase Na1.48Ni[Fe(CN)6]0.89·2.87H2O stemmed from Rietveld refinements. (Reprinted with permission [49] Copyright 2019, Wiley)

Copyright 2019, Wiley). b scheme of mesoframe and schematic crystal structure for Na2Ni[Fe(CN)6. (Reprinted with permission [13] Copyright 2018, under the terms of the Creative Commons Attribution 4.0 License, published by Multidisciplinary Digital Publishing Institute). c Charge/discharge profiles the Na2Ni0.4Co0.6[Fe(CN)6] material. (Reprinted with permission [83] Copyright 2017, American Chemical Society)

Copyright 2019, American Chemical Society). b Galvanostatic charge/discharge curves of K1.63Ni0.05Fe0.95[Fe(CN)6]0.92·0.42H2O. (Reprinted with permission [89] Copyright 2019, American Chemical Society). c Illustration scheme and long cycling performance at 1000 mA g−1 of K0.68Fe[Fe(CN)6]0.860.14·1.68H2O. (Reprinted with permission [90] Copyright 2019, American Chemical Society)

Copyright 2019, American Chemical Society)

Copyright 2019, nature research). b K2NiFe(CN)6·1.2H2O. (Reprinted with permission [96] Copyright 2018, Wiley)
References
- 1.
B. Dunn, H. Kamath, J.M. Tarascon, Science 334, 928–935 (2011)
- 2.
Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu. Chem. Rev. 111, 3577–3613 (2011)
- 3.
M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, Nat. commun. 3, 1149 (2012)
- 4.
J.Y. Hwang, S.T. Myung, Y.K. Sun, Chem. Soc. Rev. 46, 3529–3614 (2017)
- 5.
W. Zhang, X. Jiang, X. Wang, Y.V. Kaneti, Y. Chen, J. Liu, J.S. Jiang, Y. Yamauchi, M. Hu, Angew. Chem. Int. Ed. Engl. 56, 8435–8440 (2017)
- 6.
W. Li, J.R. Dahn, D.S. Wainwright, Science 264, 1115–1118 (1994)
- 7.
Y. Nishi, J. Power Sources. 100, 101–106 (2001)
- 8.
G.L. Soloveichik, Annu. Rev. Chem. Biomol. Eng. 2, 503–527 (2011)
- 9.
H.L. Pan, Y.S. Hu, L.Q. Chen, Energy Environ. Sci. 6, 2338–2360 (2013)
- 10.
M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Adv. Funct. Mater. 23, 947–958 (2013)
- 11.
R. Rajagopalan, Y. Tang, X. Ji, C. Jia, H. Wang, Adv. Funct. Mater. 30, 1909486 (2020)
- 12.
M. Mao, T. Gao, S. Hou, C. Wang, Chem. Soc. Rev. 47, 8804–8841 (2018)
- 13.
H. Sun, W. Zhang, M. Hu, Crystals 8, 23 (2018)
- 14.
X. Guo, Z. Wang, Z. Deng, X. Li, B. Wang, X. Chen, S.P. Ong, Chem. Mater. 31, 5933–5942 (2019)
- 15.
D. Su, A. McDonagh, S.-Z. Qiao, G. Wang, Adv. Mater. 29, 1604007 (2017)
- 16.
Y.V. Kaneti, J. Zhang, Y.B. He, Z.J. Wang, S. Tanaka, M.S.A. Hossain, Z.Z. Pan, B. Xiang, Q.H. Yang, Y. Yamauchi, J. Mater. Chem. A 5, 15356–15366 (2017)
- 17.
Q. Dang, Y. Li, W. Zhang, Y.V. Kaneti, M. Hu, Y. Yamauchi, Chin. Chem. Lett. (2020). https://doi.org/10.1016/j.cclet.2020.04.053
- 18.
J. Tang, R.R. Salunkhe, H. Zhang, V. Malgras, T. Ahamad, S.M. Alshehri, N. Kobayashi, S. Tominaka, Y. Ide, J.H. Kim, Y. Yamauchi, Sci Rep 6, 30295 (2016)
- 19.
C. Wang, J. Kim, J. Tang, J. Na, Y.M. Kang, M. Kim, H. Lim, Y. Bando, J. Li, Y. Yamauchi, Angew. Chem. Int. Ed. Engl. 59, 2066–2070 (2020)
- 20.
B. Wang, Y. Han, X. Wang, N. Bahlawane, H. Pan, M. Yan, Science 3, 110–133 (2018)
- 21.
F. Feng, S. Chen, X.Z. Liao, Z.F. Ma, Small Methods 3, 1800259 (2018)
- 22.
Y. Huang, M. Xie, Z. Wang, Y. Jiang, Y. Yao, S. Li, Z. Li, L. Li, F. Wu, R. Chen, Small 14, 1801246 (2018)
- 23.
H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, Inorg. Chem. 16, 2704–2710 (1977)
- 24.
F. Herren, P. Fischer, A. Ludi, W. Haelg, Inorg. Chem. 19, 956–959 (1980)
- 25.
T. Matsuda, J.E. Kim, K. Ohoyama, Y. Moritomo, Phys. Rev. B 79, 172302 (2009)
- 26.
C.D. Wessells, M.T. McDowell, S.V. Peddada, M. Pasta, R.A. Huggins, Y. Cui, ACS Nano 6, 1688–1694 (2012)
- 27.
C.F. Wang, W. Zhang, W.W. Li, Y.Y. Zhang, X.D. Tang, M. Hu, Chin. Chem. Lett. 30, 1390–1392 (2019)
- 28.
Q. Fang, W. Zhang, X.H. Chen, Y.J. Zhang, M. Hu, Chin. Chem. Lett. 31, 303–306 (2020)
- 29.
W. Zhang, W. Chen, X. Zhao, Q. Dang, Y. Li, T. Shen, F. Wu, L. Tang, H. Jiang, M. Hu, Angew. Chem. Int. Ed. Engl. 58, 7431–7434 (2019)
- 30.
H.W. Lee, R.Y. Wang, M. Pasta, S. Woo Lee, N. Liu, Y. Cui, Nat. Commun. 5, 5280 (2014)
- 31.
M.B. Robin, Inorg. Chem. 1, 337–342 (1962)
- 32.
V.D. Neff, J. Electrochem. Soc. 132, 1382–1384 (1985)
- 33.
E.W. Grabner, S. Kalwellis-Mohn, J. Appl. Electrochem. 17, 653–656 (1987)
- 34.
M. Kaneko, T. Okada, J. Electroanal. Chem. 255, 45–52 (1988)
- 35.
C.D. Wessells, R.A. Huggins, Y. Cui, Nat. Commun. 2, 550 (2011)
- 36.
C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nano Lett. 11, 5421–5425 (2011)
- 37.
A. Azhar, Y.C. Li, Z.X. Cai, M.B. Zakaria, M.K. Masud, M.S.A. Hossain, J. Kim, W. Zhang, J. Na, Y. Yamauchi, M. Hu, Bull. Chem. Soc. Jpn. 92, 875–904 (2019)
- 38.
C.H. Wang, J. Kim, J. Tang, M. Kim, H. Lim, V. Malgras, J. You, Q. Xu, J.S. Li, Y. Yamauchi, Chem 6, 19–40 (2020)
- 39.
Y. Zhao, W. Zhang, M. Hu, ChemNanoMat 3, 780–789 (2017)
- 40.
J. Chen, L. Wei, A. Mahmood, Z. Pei, Z. Zhou, X. Chen, Y. Chen, Energy Storage Mater. 25, 585–612 (2020)
- 41.
J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang, X. Ai, H. Yang, Adv. Energy Mat. 8, 1702619 (2018)
- 42.
M.B. Zakaria, T. Chikyow, Coord. Chem. Rev. 352, 328–345 (2017)
- 43.
W. Li, Y. Li, W. Zhang, D. Yin, Y. Cheng, W. Chu, M. Hu, Chin. Chem. Lett. (2020). https://doi.org/10.1016/j.cclet.2020.09.039
- 44.
W.J. Li, C. Han, G. Cheng, S.L. Chou, H.K. Liu, S.X. Dou, Small 15, e1900470 (2019)
- 45.
C. Si, Y. Wu, Y. Sun, Q. Liu, L. Tang, X. Zhang, J. Guo. Electrochim. Acta 309, 116–124 (2019)
- 46.
M. Hu, N.L. Torad, Y. Yamauchi, Eur. J. Inorg. Chem. 2012, 4795–4799 (2012)
- 47.
J.-H. Lee, G. Ali, D.H. Kim, K.Y. Chung, Adv. Energy Mater. 7, 1601491 (2017)
- 48.
T. Shao, C. Li, C. Liu, W. Deng, W. Wang, M. Xue, R. Li, J. Mater. Chem. A 7, 1749–1755 (2019)
- 49.
Y. Xu, J. Wan, L. Huang, M. Ou, C. Fan, P. Wei, J. Peng, Y. Liu, Y. Qiu, X. Sun, C. Fang, Q. Li, J. Han, Y. Huang, J.A. Alonso, Y. Zhao, Adv. Energy Mater. 9, 1803158 (2019)
- 50.
W. Ye, L. Yu, M. Sun, G. Cheng, S. Fu, S. Peng, S. Han, X. Yang, Electrochim. Acta 319, 237–244 (2019)
- 51.
H. Ming, N.L.K. Torad, Y.-D. Chiang, K.C.W. Wu, Y. Yamauchi, CrystEngComm 14, 3387 (2012)
- 52.
C. Li, X. Wang, W. Deng, C. Liu, J. Chen, R. Li, M. Xue, ChemElectroChem 5, 3887–3892 (2018)
- 53.
J. Wang, L. Li, S. Zuo, Y. Zhang, L. Lv, R. Ran, X. Li, B. Li, F. Zhao, J. Zhang, Y. Wang, P. Nie, Electrochim. Acta 341, 136057 (2020)
- 54.
M. Qin, W. Ren, J. Meng, X. Wang, X. Yao, Y. Ke, Q. Li, L. Mai, ACS Sustainable Chem. Eng. 7, 11564–11570 (2019)
- 55.
H.C. Yi, R.Z. Qin, S.X. Ding, Y.T. Wang, S.N. Li, Q.H. Zhao, F. Pan, Adv. Funct. Mater. 76, 2006970 (2020)
- 56.
C. Chen, W. Zhang, Y. Hong, Z. Le, Q. Li, W. Li, M. Hu, Chem. Commun. 55, 2545–2548 (2019)
- 57.
Y.C. Li, Q. Dang, C.J. Shi, W. Zhang, C.B. Jing, X. Li, M. Hu, J. Mater. Chem. A 7, 23084–23090 (2019)
- 58.
W. Zhang, J. Chu, M. Hu, Chem Asian J. 15, 1202–1213 (2020)
- 59.
Y.Y. Zhao, X. Li, M. Hu, Chin. Chem. Lett. 30, 630–633 (2019)
- 60.
K. Hurlbutt, S. Wheeler, I. Capone, M. Pasta, Joule 2, 1950–1960 (2018)
- 61.
X. Bie, K. Kubota, T. Hosaka, K. Chihara, S. Komaba, J. Power Sources 378, 322–330 (2018)
- 62.
D. Asakura, M. Okubo, Y. Mizuno, T. Kudo, H.S. Zhou, K. Ikedo, T. Mizokawa, A. Okazawa, N. Kojima, J. Phys. Chem. C 116, 8364–8369 (2012)
- 63.
L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J.B. Goodenough, Angew. Chem. Int. Ed. Engl. 52, 1964–1967 (2013)
- 64.
Y. Lu, L. Wang, J. Cheng, J.B. Goodenough, Chem. Commun. 48, 6544–6546 (2012)
- 65.
Y. You, X.L. Wu, Y.X. Yin, Y.G. Guo, Energy Environ. Sci. 7, 1643–1647 (2014)
- 66.
J. Song, L. Wang, Y. Lu, J. Liu, B. Guo, P. Xiao, J.J. Lee, X.Q. Yang, G. Henkelman, J.B. Goodenough, J. Am. Chem. Soc. 137, 2658–2664 (2015)
- 67.
Y. Tang, W. Li, P. Feng, M. Zhou, K. Wang, Y. Wang, K. Zaghib, K. Jiang, Adv. Funct. Mater. 30, 1908754 (2020)
- 68.
H. Gao, S. Xin, L. Xue, J.B. Goodenough, Chem 4, 833–844 (2018)
- 69.
X. Wu, Z. Jian, Z. Li, X. Ji, Electrochem. Commun. 77, 54–57 (2017)
- 70.
M. Takachi, T. Matsuda, Y. Moritomo, Jpn. J. Appl. Phys. 52, 090202 (2013)
- 71.
H. Lee, Y.I. Kim, J.K. Park, J.W. Choi, Chem. Commun. 48, 8416–8418 (2012)
- 72.
Y. Fang, Z. Chen, L. Xiao, X. Ai, Y. Cao, H. Yang, Small 14, 1703116 (2018)
- 73.
Y. Fang, L. Xiao, Z. Chen, X. Ai, Y. Cao, H. Yang, Electrochem. Energy Rev. 1, 294–323 (2018)
- 74.
C. Yan, A. Zhao, F. Zhong, X. Feng, W. Chen, J. Qian, X. Ai, H. Yang, Y. Cao, Electrochim. Acta 332, 135533 (2020)
- 75.
L. Yang, Q. Liu, M. Wan, J. Peng, Y. Luo, H. Zhang, J. Ren, L. Xue, W. Zhang, J. Power Sources 448, 227421 (2020)
- 76.
B. Xie, P. Zuo, L. Wang, J. Wang, H. Huo, M. He, J. Shu, H. Li, S. Lou, G. Yin, Nano Energy 61, 201–210 (2019)
- 77.
Y. Xu, M. Ou, Y. Liu, J. Xu, X. Sun, C. Fang, Q. Li, J. Han, Y. Huang, Nano Energy 67, 104250 (2020)
- 78.
B. Xie, L. Wang, J. Shu, X. Zhou, Z. Yu, H. Huo, Y. Ma, X. Cheng, G. Yin, P. Zuo, ACS Appl. Mater. Interfaces 11, 46705–46713 (2019)
- 79.
X. Wu, C. Wu, C. Wei, L. Hu, J. Qian, Y. Cao, X. Ai, J. Wang, H. Yang, ACS Appl. Mater. Interfaces 8, 5393–5399 (2016)
- 80.
Q. Yang, W. Wang, H. Li, J. Zhang, F. Kang, B. Li, Electrochim. Acta 270, 96–103 (2018)
- 81.
L. Jiang, L. Liu, J. Yue, Q. Zhang, A. Zhou, O. Borodin, L. Suo, H. Li, L. Chen, K. Xu, Y.S. Hu, Adv. Mater. 32, 1904427 (2020)
- 82.
W. Li, F. Zhang, X. Xiang, X. Zhang, ChemElectroChem 4, 2870–2876 (2017)
- 83.
W.F. Li, F. Zhang, X.D. Xiang, X.C. Zhang, J. Phys. Chem. C 121, 27805–27812 (2017)
- 84.
B. Paulitsch, J. Yun, A.S. Bandarenka, ACS Appl. Mater. Interfaces. 9, 8107–8112 (2017)
- 85.
K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Chem. Rec. 18, 459–479 (2018)
- 86.
G. He, L.F. Nazar, ACS Energy Lett. 2, 1122–1127 (2017)
- 87.
M. Xie, M. Xu, Y. Huang, R. Chen, X. Zhang, L. Li, F. Wu, Electrochem. Commun. 59, 91–94 (2015)
- 88.
Y. Luo, B. Shen, B. Guo, L. Hu, Q. Xu, R. Zhan, Y. Zhang, S. Bao, M. Xu, J. Phys. Chem. Solids 122, 31–35 (2018)
- 89.
B. Huang, Y. Liu, Z. Lu, M. Shen, J. Zhou, J. Ren, X. Li, S. Liao, ACS Sustain. Chem. Eng. 7, 16659–16667 (2019)
- 90.
Q. Xue, L. Li, Y. Huang, R. Huang, F. Wu, R. Chen, ACS Appl. Mater. Interfaces. 11, 22339–22345 (2019)
- 91.
X. Bie, K. Kubota, T. Hosaka, K. Chihara, S. Komaba, J. Mater. Chem. A 5, 4325–4330 (2017)
- 92.
Y. Sun, C. Liu, J. Xie, D. Zhuang, W. Zheng, X. Zhao, New J. Chem. 43, 11618–11625 (2019)
- 93.
B. Huang, Y. Shao, Y. Liu, Z. Lu, X. Lu, S. Liao, ACS Appl. Energy Mater. 2, 6528–6535 (2019)
- 94.
J.W. Heo, M.S. Chae, J. Hyoung, S.T. Hong, Inorg. Chem. 58, 3065–3072 (2019)
- 95.
L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang, Q. Zhang, X. Shen, J. Zhao, X. Yu, H. Li, X. Huang, L. Chen, Y.-S. Hu, Nat. Energy 4, 495–503 (2019)
- 96.
W. Ren, X. Chen, C. Zhao, Adv. Energy Mater. 8, 1801413 (2018)
- 97.
S. Gheytani, Y. Liang, F. Wu, Y. Jing, H. Dong, K.K. Rao, X. Chi, F. Fang, Y. Yao, Adv. Sci. 4, 1700465 (2017)
- 98.
M. Rashad, M. Asif, Y. Wang, Z. He, I. Ahmed, Energy Storage Materials 25, 342–375 (2020)
- 99.
P. Saha, M.K. Datta, O.I. Velikokhatnyi, A. Manivannan, D. Alman, P.N. Kumta, Prog. Mater Sci. 66, 1–86 (2014)
- 100.
Y. Mizuno, M. Okubo, E. Hosono, T. Kudo, K. Oh-ishi, A. Okazawa, N. Kojima, R. Kurono, S. Nishimura, A. Yamada, J. Mater. Chem. A 1, 13055–13059 (2013)
- 101.
L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, Y. Xia, ACS Energy Lett. 2, 1115–1121 (2017)
- 102.
P. Marzak, M. Kosiahn, J. Yun, A.S. Bandarenka, Electrochim. Acta 307, 157–163 (2019)
- 103.
D.M. Kim, Y. Kim, D. Arumugam, S.W. Woo, Y.N. Jo, M.S. Park, Y.J. Kim, N.S. Choi, K.T. Lee, ACS Appl. Mater. Interfaces 8, 8554–8560 (2016)
- 104.
C. Lee, S.-K. Jeong, Chem. Lett. 45, 1447–1449 (2016)
- 105.
C. Lee, S.-K. Jeong, Electrochim. Acta 265, 430–436 (2018)
- 106.
M. Adil, A. Sarkar, A. Roy, M.R. Panda, A. Nagendra, S. Mitra, ACS Appl. Mater. Interfaces 12, 11489–11503 (2020)
- 107.
N. Kuperman, P. Padigi, G. Goncher, D. Evans, J. Thiebes, R. Solanki, J. Power Sources 342, 414–418 (2017)
- 108.
C. Xu, B. Li, H. Du, F. Kang, Angew. Chem. Int. Ed. 51, 933–935 (2012)
- 109.
L. Zhang, L. Chen, X. Zhou, Z. Liu, Sci. Rep. 5, 18263 (2015)
- 110.
R. Trócoli, G. Kasiri, F. La Mantia, J. Power Sources 400, 167–171 (2018)
- 111.
J. Lim, G. Kasiri, R. Sahu, K. Schweinar, K. Hengge, D. Raabe, F. La Mantia, C. Scheu, Chemistry 26, 4917–4922 (2020)
- 112.
L. Ma, S. Chen, C. Long, X. Li, Y. Zhao, Z. Liu, Z. Huang, B. Dong, J.A. Zapien, C. Zhi, Adv. Energy Mater. 9, 1902446 (2019)
- 113.
S. Liu, G.L. Pan, G.R. Li, X.P. Gao, J. Mater. Chem. A 3, 959–962 (2015)
- 114.
A. Holland, R.D. McKerracher, A. Cruden, R.G.A. Wills, J. Appl. Electrochem. 48, 243–250 (2018)
- 115.
Y. Gao, H. Yang, X. Wang, Y. Bai, N. Zhu, S. Guo, L. Suo, H. Li, H. Xu, C. Wu, Chemsuschem 13, 732–740 (2020)
Acknowledgements
The authors of this work gratefully appreciate the financial support provided by National Natural Science Foundation of China (Grant Nos. 41573096, 21707064), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_17R71), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant QD2019005).
Author information
Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no conflict of interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, Y., Dang, Q., Chen, W. et al. Recent Advances in Rechargeable Batteries with Prussian Blue Analogs Nanoarchitectonics. J Inorg Organomet Polym (2021). https://doi.org/10.1007/s10904-021-01886-6
Received:
Accepted:
Published:
Keywords
- Nanoarchitectonics
- Prussian blue analogs
- Energy storage
- Rechargeable batteries
- Electrochemical properties