Skip to main content

Advertisement

Log in

Linear and Nonlinear Optical Response of Nickel Core–Shell @ Silica/PMMA Nanocomposite Film for Flexible Optoelectronic Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Optical and dispersion properties can be altered by incorporating Ni@SiO2 nanoparticles on poly-methyl methacrylate (PMMA) for optoelectronic applications. The Ni@SiO2/PMMA nanocomposite films were prepared by the casting method. The morphology of the prepared nanoparticles was examined through a High-resolution transition electron microscope (HRTEM), it showed the formation of nickel core–shell @ silica. Furthermore, the homogenous distribution of Ni@SiO2/PMMA was confirmed by X-ray mapping. The linear optical properties revealed that the absorption coefficient, extinction coefficient, refractive index, real and imaginary part of dielectric constants, and the optical conductivity increased with increasing the incorporation of Ni@SiO2 nanoparticles on poly-methyl methacrylate (PMMA). Likewise, volume and surface energy loss functions (VELF and SELF) increased with increasing Ni@SiO2 in the PMMA matrix. The values of dispersion energy Ed, static refractive index no, lattice dielectric constant εl, and high dielectric constant ε increased as the filler increased while the single oscillator energy Eo and oscillator strength decreased. Both the linear optical susceptibility and the parameter of nonlinear optical properties such as third nonlinear optical susceptibility, nonlinear refractive index n2, and nonlinear absorption coefficient are found to be a function of Ni@SiO2 contents. Furthermore, the electrical susceptibility and relative permittivity increased as the Ni@SiO2 contents increased in the PMMA matrix. So, Ni@SiO2/PMMA matrix has been considered as promising nanocomposites for flexible optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Hosseini, A.H. Babak Mazinani, Opt. Mater. 92, 1–10 (2019)

    CAS  Google Scholar 

  2. H.M. Abomostafa, J. Mol. Struct. 1225, 129126 (2020)

    Google Scholar 

  3. M. Bafna, A. Kumar Guptaa, R.K. Khanna, Mater. Today 10, 38–45 (2019)

    CAS  Google Scholar 

  4. W. Brostow, M. Dutta, J. Ricardo de Souza, P. Rusek, A. Marcos de Medeiros, E.N. Ito, Express Polym. Lett. 4, 570–575 (2010)

    CAS  Google Scholar 

  5. J.E. Mark, The Polymer Data Handbook, 2nd edn. (Oxford University Press, New York, 2009).

    Google Scholar 

  6. F. D’Amore, M. Lanata, S.M. Pietralunga, M.C. Gallazzi, G. Zerbi, Opt. Mater. 24, 661–665 (2004)

    Google Scholar 

  7. J.Z. Mbese, P.A. Ajibade, Polymers 6, 2332–2344 (2014)

    Google Scholar 

  8. O.G. Abdullah, S.B. Aziz, M.A. Rasheed, J. Mater. Sci. Mater. Electron. 28, 4513–4520 (2017)

    CAS  Google Scholar 

  9. S.B. Aziz, O.G. Abdullah, M.A. Brza, A.K. Azawy, D.A. Tahir, Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102776

    Article  Google Scholar 

  10. L.M. Liz-Marzán, M. Giersig, P. Mulvaney, Langmuir 12, 4329–4335 (1996)

    Google Scholar 

  11. T. Ung, L.M. Liz-Marzán, P. Mulvaney, J. Phys. Chem. B. 105, 3441–3452 (2001)

    CAS  Google Scholar 

  12. K. Aslan, M. Wu, J.R. Lakowicz, C.D. Geddes, J Am Chem Soc. 129, 1524–1525 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. M.D. Brown, T. Suteewong, R.S.S. Kumar, V. D’Innocenzo, A. Petrozza, M.M. Lee, U. Wiesner, H.J. Snaith, Nano Lett. 11, 438–445 (2010)

    PubMed  Google Scholar 

  14. A.J.S. Barroso, L.A. Gómez-Malagón, Plasmonics 9, 193–199 (2014)

    Google Scholar 

  15. F.S. Shokr, Optik. 149, 270–276 (2017)

    CAS  Google Scholar 

  16. S.R. Maidur, P.S. Patil, Opt. Int. J. Light Electron. Opt. 190, 54–67 (2019)

    CAS  Google Scholar 

  17. R.M. Abozaid, Z.Ž Lazarevićb, N. Tomić, A. Milutinović, D. Šević, M.S. Rabasović, V. Radojević, Opt. Mater. 96, 109361 (2019)

    CAS  Google Scholar 

  18. R. Singh, R.B. Choudhary, R. Kandulna, Mater. Sci. Semicond. Process. 103, 104623 (2019)

    CAS  Google Scholar 

  19. D. Nayak, R. Bilash Choudhary, Opt. Mater. 91, 470–481 (2019)

    CAS  Google Scholar 

  20. S. Khursheed, P. Biswas, V.K. Singh, V. Kumar, H.C. Swart, J. Sharma, Vacuum 159, 414–422 (2019)

    CAS  Google Scholar 

  21. S.P. Singh, S.K. Sharma, D.Y. Kim, Solid State Sci. 99, 106046 (2020)

    CAS  Google Scholar 

  22. P. Maji, R.B. Choudhary, M. Majhi, J. Non-Cryst. Solids 456, 40–48 (2017)

    CAS  Google Scholar 

  23. P. Maji, R.B. Choudhary, M. Majhi, Optik 127, 4848–4853 (2016)

    CAS  Google Scholar 

  24. W. Hui, Z. Jun-Feng, B. Yun-Xing, W. Wen-Feng, T. Yi-Sheng, H. Yi-Zhuo, J. Fuel Chem. Technol. 44(5), 548–556 (2016)

    Google Scholar 

  25. K. Thanigai Arul, E. Manikandan, P.P. Murmu, J. Kennedy, M. Henini, J. Alloys Compds. 720, 395–400 (2017)

    CAS  Google Scholar 

  26. D.E. Abulyazied, H.M. Abomostafa, G.M. El Komy, J. Inorg. Organomet. Polym. Mater. 30, 2335–2346 (2020). https://doi.org/10.1007/s10904-020-01445-5

    Article  CAS  Google Scholar 

  27. H. Abomostafa, S.A. Gad, A.I. Khalaf, J. Inorg. Organomet. Polym. Mater. 28, 2759–2769 (2018). https://doi.org/10.1007/s10904-018-0916-6

    Article  CAS  Google Scholar 

  28. D.F. Swinehart, J. Chem. Educ. 39(7), 333 (1962)

    CAS  Google Scholar 

  29. N. Singh, P.K. Khanna, Mater. Chem. Phys. 1042, 367–372 (2007)

    Google Scholar 

  30. N. An, B. Zhuang, M. Li, Y. Lu, Z.-G. Wang, J. Phys. Chem. B 119, 10701–10709 (2015)

    CAS  PubMed  Google Scholar 

  31. E.A. Tikhonov, V.S. Ivashkin, A.K. Ljamec, J. Appl. Spectrosc. 79, 148 (2012)

    CAS  Google Scholar 

  32. M. Behera, R. Naika, C. Sripan, R. Ganesan, N.C. Mishra, Curr. Appl. Phys. 19, 884–893 (2019)

    Google Scholar 

  33. F. Yakuphanoglu, M. Sekerci, A. Balaban, Opt. Mater. 27, 1369–1372 (2005)

    CAS  Google Scholar 

  34. M. Didomenico, S.H. Wemple, J. Appl. Phys. 40, 720 (1969)

    CAS  Google Scholar 

  35. S.H. Wemple, M. Didomenico, Phys. Rev. B 3, 1338 (1971)

    Google Scholar 

  36. S.H. Wemple, Phys. Rev. B 7, 3767 (1973)

    CAS  Google Scholar 

  37. M.B. El-Den, M.M. El-Nahass, J. Opt. Laser Technol. 35, 335 (2003)

    CAS  Google Scholar 

  38. S. I. Qashou, S.E. Al Garni, A.A.A. Darwish, Mustafa M. Hawamdeh, Al A. Aldrabee, Gamma radiation Optik. 170, 540–547 (2018)

  39. A.F. Mansour, S.F. Mansour, M.A. Abdo, J. Appl. Phys. 7, 60–69 (2015)

    Google Scholar 

  40. M.I. Mohammed, J. Mol. Struct. 1169, 9–17 (2018)

    CAS  Google Scholar 

  41. S.H. Wempl, M. DiDomenico, J. Phys. Rev. Lett. 23, 1156 (1969)

    Google Scholar 

  42. H.S. Shaaker, W.A. Hussain, H.A. Badran, Appl. Sci. Res. 3(5), 2940–2946 (2012)

    CAS  Google Scholar 

  43. O. Stenzel, S. Wilbrand, A. Stendal, U. Beckers, K. Voigtsberger, C.V. Borczyskowski, J. Phys. D 28, 2154 (1995)

    CAS  Google Scholar 

  44. N. Sharma, S. Sharma, A. Sarin, R. Kumar, Opt. Mater. 51, 56–61 (2014)

    Google Scholar 

  45. M.I. Mohammed, M.S. Abd El-sadek, I.S. Yahia, Opt. Laser Technol. 121, 105823 (2020)

  46. T. Takami, M. Sadamichi, J. Phys. Soc. Jpn. 60, 53–56 (1991)

    Google Scholar 

  47. S. A. Gad, A. Abdel Moez, Journal of Inorganic and Organometallic Polymers and Materials 30, 469–476 (2020). Doi: https://doi.org/10.1007/s10904-019-01205-0

  48. M.M. Hafiz, H.M. Kotb, M.A. Dabban, A.Y. Abdel-latif, J. Opt. Laser Tech. 49, 188–195 (2013)

    CAS  Google Scholar 

  49. L. Tichý, H. Ticha, P. Nagels, R. Callaerts, R. Mertens, M. Vlcek, Mater. Lett. 39, 122–128 (1999)

    Google Scholar 

  50. Sh.B. Aziz, O. Gh Abdullah, A.M. Hussein, R.T. Abdulwahid, M.A. Rasheed, H.M. Ahmed, S.W. Abdalqadir, A.R. Mohammed, J. Mater. Sci. Mater. Electron. 28, 7473–7479 (2017)

    CAS  Google Scholar 

  51. D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, D.C. Rogers, Science 286, 1523–1528 (1999)

    CAS  PubMed  Google Scholar 

  52. P. Zhou, G. You, J. Li, S. Wang, S. Qian, L. Chen, Opt. Express 13, 1508 (2005)

    CAS  PubMed  Google Scholar 

  53. G. Shanmugam, V. Sasikala, V. Krishnakumar, K. Govindasamy, J Mater Sci. 51, 3241–3249 (2016)

    CAS  Google Scholar 

  54. Y. Yang, M. Hori, T. Hayakawa, M. Nogami, Surf. Sci. 579, 215–224 (2005)

    CAS  Google Scholar 

  55. B. Derkowska, B. Sahraouia, X.N. Phua, W. Bala, Proc. SPIE. 4412, 337–342 (2001)

    CAS  Google Scholar 

  56. V. Gupta, A.I. Mansingh, J. Appl. Phys. 80, 1063 (1996)

    CAS  Google Scholar 

  57. S.E. Braslavsky, Pure Appl. Chem. 79, 293 (2007)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Abomostafa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abomostafa, H.M., Abulyazied, D.E. Linear and Nonlinear Optical Response of Nickel Core–Shell @ Silica/PMMA Nanocomposite Film for Flexible Optoelectronic Applications. J Inorg Organomet Polym 31, 2902–2914 (2021). https://doi.org/10.1007/s10904-021-01883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01883-9

Keywords

Navigation