In Vivo Study of Silver Nanoparticles Entrapped Poly(N-vinyl pyrrolidone/Dextran) Hydrogel Synthesized by Gamma Radiation on the Antitumor Activity of Doxorubicin

Abstract

The preparation of interpenetrating hydrogel networks (IPN) based on cross-linked poly (N-vinyl pyrrolidone/Dextran) P(NVP/Dex) and poly (N-vinyl pyrrolidone/Dextran)-Ag nanocomposites P(NVP/Dex)-Ag prepared by gamma radiation. Highly stable and uniformly distributed silver nanoparticles have been obtained within hydrogel networks as nanoreactors via in situ reduction of silver nitrate (AgNO3) using sodium borohydride (NaBH4) as reducing agent. The formation of P(NVP/Dex)-Ag has been confirmed by fourier transform infrared (FT-IR) spectroscopy. The ultraviolet visible (UV–vis) spectroscopy measurements show a distinct characteristic absorption peaks around 420 nm indicating the formation of silver nanoparticles. The thermogravimetric analysis (TGA) results confirm the increase in thermal stability by incorporation of silver nanoparticles. X-ray diffraction (XRD) analysis and dynamic light scattering (DLS) results demonstrate that the hydrogels have regulated the silver nanoparticles size to a nanoscale with a range between 9.9–15.1 nm and 47.1–73.7 nm respectivelly. The combination of silver nanoparticles with Doxorubicin (DOX) as a model of antitumor drug forms a new biocompatible nano-drug. Our results show that, the mixing of silver nanoparticles with Doxorubicin can effectively increase the antitumor activity and enhance the cytotoxicity.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    A.-M.M. Osman et al., Modulation of doxorubicin cytotoxicity by resveratrol in a human breast cancer cell line. Cancer Cell Int. 12(1), 1–8 (2012)

    Article  Google Scholar 

  2. 2.

    R. Lüpertz et al., Dose-and time-dependent effects of doxorubicin on cytotoxicity, cell cycle and apoptotic cell death in human colon cancer cells. Toxicology 271(3), 115–121 (2010)

    Article  Google Scholar 

  3. 3.

    D. Gewirtz, A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 57(7), 727–741 (1999)

    CAS  Article  Google Scholar 

  4. 4.

    H.S. Oberoi et al., Cisplatin-loaded core cross-linked micelles: comparative pharmacokinetics, antitumor activity, and toxicity in mice. Int. J. Nanomed. 7, 2557 (2012)

    CAS  Article  Google Scholar 

  5. 5.

    C.J. Sunderland et al., Targeted nanoparticles for detecting and treating cancer. Drug Dev. Res. 67(1), 70–93 (2006)

    CAS  Article  Google Scholar 

  6. 6.

    F.X. Gu et al., Targeted nanoparticles for cancer therapy. Nano Today 2(3), 14–21 (2007)

    Article  Google Scholar 

  7. 7.

    Y. Zhou, X. Wang, Study on synergistic effect of new functionalized Ag nanoparticles for intracellular drug uptake in cancer cells. Nano Biomed. Eng. 2, 211–217 (2010)

    Article  Google Scholar 

  8. 8.

    P. AshaRani et al., Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2), 279–290 (2009)

    CAS  Article  Google Scholar 

  9. 9.

    R. Thombre et al., Synthesis of silver nanoparticles and its cytotoxic effect against THP-1 cancer cell line. Int. J. Pharma Bio Sci. 4(1), 184–192 (2013)

    CAS  Google Scholar 

  10. 10.

    M.I. Sriram et al., Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomed. 5, 753 (2010)

    CAS  Google Scholar 

  11. 11.

    S. Kim et al., Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro 23(6), 1076–1084 (2009)

    CAS  Article  Google Scholar 

  12. 12.

    S. Bajpai et al., Synthesis of polymer stabilized silver and gold nanostructures. J. Nanosci. Nanotechnol. 7(9), 2994–3010 (2007)

    CAS  Article  Google Scholar 

  13. 13.

    K. Esumi, R. Isono, T. Yoshimura, Preparation of PAMAM− and PPI− metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir 20(1), 237–243 (2004)

    CAS  Article  Google Scholar 

  14. 14.

    K. Vimala et al., Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly (acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohyd. Polym. 75(3), 463–471 (2009)

    CAS  Article  Google Scholar 

  15. 15.

    Y.M. Mohan et al., Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48(1), 158–164 (2007)

    CAS  Article  Google Scholar 

  16. 16.

    H. Mansour, M. Eid, M.B. El-Arnaouty, Effect of silver nanoparticles synthesized by gamma radiation on the cytotoxicity of doxorubicin in human cancer cell lines and experimental animals. Hum. Exp. Toxicol. 37(1), 38–50 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    Y.M. Mohan et al., Controlling of silver nanoparticles structure by hydrogel networks. J. Colloid Interface Sci. 342(1), 73–82 (2010)

    Article  Google Scholar 

  18. 18.

    Y. Liu et al., Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiat. Phys. Chem. 78(4), 251–255 (2009)

    CAS  Article  Google Scholar 

  19. 19.

    R. Kumar, H. Münstedt, Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26(14), 2081–2088 (2005)

    CAS  Article  Google Scholar 

  20. 20.

    A.E.-M.M. Osman et al., Hyperthermic potentiation of cisplatin cytotoxicity on solid Ehrlich carcinoma. Tumori J. 79(4), 268–272 (1993)

    CAS  Article  Google Scholar 

  21. 21.

    M. Eid, In vitro release studies of vitamin B12 from poly N-vinyl pyrrolidone/starch hydrogels grafted with acrylic acid synthesized by gamma radiation. Nucl. Instrum. Methods Phys. Res. Sect. B 266(23), 5020–5026 (2008)

    CAS  Article  Google Scholar 

  22. 22.

    M. Eid et al., Radiation synthesis and characterization of poly (vinyl alcohol)/poly (N-vinyl-2-pyrrolidone) based hydrogels containing silver nanoparticles. J. Polym. Res. 19(3), 9835 (2012)

    Article  Google Scholar 

  23. 23.

    S. Dubinsky et al., Thermal degradation of poly (acrylic acid) containing copper nitrate. Polym. Degrad. Stab. 86(1), 171–178 (2004)

    CAS  Article  Google Scholar 

  24. 24.

    J.H. Flynn, L.A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. C 4(5), 323–328 (1966)

    CAS  Google Scholar 

  25. 25.

    M.B. El-Arnaouty, M. Eid, Synthesis of grafted hydrogels as mono-divalent cation exchange for drug delivery. Polymer-Plast. Technol. Eng. 49(2), 182–190 (2010)

    CAS  Article  Google Scholar 

  26. 26.

    M. Eid, Gamma radiation synthesis and characterization of starch based polyelectrolyte hydrogels loaded silver nanoparticles. J. Inorg. Organomet. Polym Mater. 21(2), 297–305 (2011)

    CAS  Article  Google Scholar 

  27. 27.

    P. Chen et al., Synthesis of silver nanoparticles by γ-ray irradiation in acetic water solution containing chitosan. Radiat. Phys. Chem. 76(7), 1165–1168 (2007)

    CAS  Article  Google Scholar 

  28. 28.

    C.J. Murphy, N.R. Jana, Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 14(1), 80–82 (2002)

    CAS  Article  Google Scholar 

  29. 29.

    P.K. Murthy et al., First successful design of semi-IPN hydrogel–silver nanocomposites: a facile approach for antibacterial application. J. Colloid Interface Sci. 318(2), 217–224 (2008)

    CAS  Article  Google Scholar 

  30. 30.

    Y.M. Mohan, K.E. Geckeler, Polyampholytic hydrogels: poly (N-isopropylacrylamide)-based stimuli-responsive networks with poly (ethyleneimine). React. Funct. Polym. 67(2), 144–155 (2007)

    CAS  Article  Google Scholar 

  31. 31.

    S. Arora et al., Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol. Lett. 179(2), 93–100 (2008)

    CAS  Article  Google Scholar 

  32. 32.

    E. Meiyanto et al., Nobiletin increased cytotoxic activity of doxorubicin on MCF-7 cells but not on T47D cells. Int. J. Phytomed. 3(1), 129 (2011)

    CAS  Google Scholar 

  33. 33.

    A.S. Lanje, S.J. Sharma, R.B. Pode, Synthesis of silver nanoparticles: a safer alternative to conventional antimicrobial and antibacterial agents. J. Chem. Pharm. Res. 2(3), 478–483 (2010)

    CAS  Google Scholar 

  34. 34.

    S. Kim, D.Y. Ryu, Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J. Appl. Toxicol. 33(2), 78–89 (2013)

    Article  Google Scholar 

  35. 35.

    D.K. Tiwari, T. Jin, J. Behari, Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol. Mech. Methods 21(1), 13–24 (2011)

    CAS  Article  Google Scholar 

  36. 36.

    M. Rahman et al., Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol. Lett. 187(1), 15–21 (2009)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Eid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Arnaouty, M.B., Eid, M. & Mansour, H.H. In Vivo Study of Silver Nanoparticles Entrapped Poly(N-vinyl pyrrolidone/Dextran) Hydrogel Synthesized by Gamma Radiation on the Antitumor Activity of Doxorubicin. J Inorg Organomet Polym (2021). https://doi.org/10.1007/s10904-021-01882-w

Download citation

Keywords

  • Poly(n-vinyl pirrolidine/dextran)
  • Ag nanoparticles
  • DLS
  • UV–vis
  • Doxorubicin