Process optimization and adsorption modeling using hierarchical ZIF-8 modified with Lanthanum and Copper for sulfate uptake from aqueous solution: Kinetic, Isotherm and Thermodynamic studies

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the current study, the hieratical zeolitic imidazole framework 8 (H/ZIF-8) and bimetallic H/ZIF-8, H/ZIF-8@La and H/ZIF-8@Cu, were prepared with a simple and green method using water as a solvent. Process parameters (temperature and time of crystallization), as well as compositional parameters (amount of 2-Methylimidazole and 2-(methylamino)ethanol), were studied. H/ZIF-8 samples were characterized with XRD, EDS, FE-SEM, TGA/DTA, FTIR, N2 isotherms, and their performance was evaluated for sulfate uptake from aqueous media. An experimental design was utilized in this study to optimize the independent variables using central composite design (CCD) under the response surface methodology (RSM) method. A significant agreement between the models and experimental data was verified by analysis of variance (ANOVA). The adsorption equilibrium models of Langmuir, Jovanovic, Freundlich, and Temkin isotherms were evaluated and the results described that the Langmuir model was the best with the experimental data. Different kinetic models were estimated and found that pseudo-second-order kinetic data were well-fitted for removal reaction. The determination of different thermodynamic parameters reflected that the sulfate uptake was spontaneous and feasible and that three H/ZIF-8 samples had an endothermic nature. The adsorption on H/ZIF-8 samples was not significantly influenced by the competing anions of nitrate, chloride and fluoride but phosphate displayed slightly greater negative effects. The used H/ZIF-8 samples could be regenerated and reused in eight consecutive cycles with a proper desorption agent. The results of sulfate removal from a real sample revealed that using H/ZIF-8 and two bimetallic H/ZIF-8 samples for sulfate removal from polluted waters is a promising alternative for sulfate recovery.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    A. Danil de Namor, Water Sci Tech-W Sup 7, 33–39 (2007)

    CAS  Article  Google Scholar 

  2. 2.

    A. Roshan, M. Kumar, J. Environ. Manag. 268, 110663 (2020)

    Article  Google Scholar 

  3. 3.

    C.L. Moe, R.D. Rheingans, J. Water Health 4, 41–57 (2006)

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    A.G. Leonel, A.A.P. Mansur, H.S. Mansur, Water Res. 190, 116693 (2021)

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    N. Kumar, D. Sinha, Int. J. Environ. Sci. 1, 253–259 (2010)

    CAS  Google Scholar 

  6. 6.

    Z. Fang, Y. Gao, N. Bolan, S.M. Shaheen, S. Xu, X. Wu, X. Xu, H. Hu, J. Lin, F. Zhang, J. Li, J. Rinklebe, H. Wang, Chem. Eng. J. 390, 124611 (2020)

    CAS  Article  Google Scholar 

  7. 7.

    S. Alrumman, S. Keshk, A. El Kott, Am. J. Enviro. Eng, 88–98 (2016)

  8. 8.

    M. Chen, C.T. Jafvert, Y. Wu, X. Cao, N.P. Hankins, Chem. Eng. J. 398, 125413 (2020)

    CAS  Article  Google Scholar 

  9. 9.

    L.C. Reyes-Alvarado, N.N. Okpalanze, E.R. Rene, E. Rustrian, E. Houbron, G. Esposito, P.N. Lens, J. Environ. Manag. 200, 407–415 (2017)

    CAS  Article  Google Scholar 

  10. 10.

    C. Donga, S.B. Mishra, A.S. Abd-El-Aziz, A.K. Mishra, J. Inorg. Organomet. Polym. Mater. 1-18 (2020)

  11. 11.

    J.J.M. Geurts, J.M. Sarneel, B.J.C. Willers, J.G.M. Roelofs, J.T.A. Verhoeven, L.P.M. Lamers, Environ. Pollut. 157, 2072–2081 (2009)

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    H. Runtti, E.-T. Tolonen, S. Tuomikoski, T. Luukkonen, U. Lassi, Environ. Res. 167, 207–222 (2018)

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    C. Rodrigues, D. Núñez-Gómez, H.V.D.M. Follmann, D.D. Silveira, M.E. Nagel-Hassemer, F.R. Lapolli, M.Á. Lobo-Recio, J. Hazard. Mater. 122893 (2020)

  14. 14.

    M. Khabazipour, M. Anbia, Ind. Eng. Chem. Res. 58, 22133–22164 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    L. Wu, Z. Yan, J. Li, S. Huang, Z. Li, M. Shen, Y. Peng, Environ. Pollut. 259, 113763 (2020)

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    D. Navamani Kartic, B.C. Aditya Narayana, M. Arivazhagan, J. Environ. Manag. 206, 69–76 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    T. Chen, Q. Wang, J. Lyu, P. Bai, X. Guo, Sep. Purif. Technol. 231, 115930 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    C. Zhao, T. Zhang, G. Hu, J. Ma, R. Song, J. Li, J. Membr. Sci. 118176 (2020)

  19. 19.

    G. Chen, H. Liu, Chem. Eng. J. 396, 125136 (2020)

    CAS  Article  Google Scholar 

  20. 20.

    A. Tuszynska, K. Kolecka, B. Quant, Ecol. Eng. 53, 321–328 (2013)

    Article  Google Scholar 

  21. 21.

    P. Mandal, A.K. Gupta, B.K. Dubey, J Water Process Eng. 33, 101119 (2020)

    Article  Google Scholar 

  22. 22.

    W. Tang, D. He, C. Zhang, T.D. Waite, Water Res. 121, 302–310 (2017)

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman, Bioresour. Technol. 160, 191–202 (2014)

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    C.V. Lazaratou, D.V. Vayenas, D. Papoulis, Appl. Clay Sci. 185, 105377 (2020)

    CAS  Article  Google Scholar 

  25. 25.

    B. Kamarehie, Z. Noraee, A. Jafari, M. Ghaderpoori, M.A. Karami, A. Ghaderpoury, Data Brief 20, 799–804 (2018)

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    S. Salehi, M. Hosseinifard, Cellul. 1-25 (2020)

  27. 27.

    X. Castillo, J. Pizarro, C. Ortiz, H. Cid, M. Flores, E. De Canck, P. Van Der Voort, Microporous Mesoporous Mater. 272, 184–192 (2018)

    CAS  Article  Google Scholar 

  28. 28.

    H. Ao, W. Cao, Y. Hong, J. Wu, L. Wei, Sci. Total Environ. 708, 135092 (2020)

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    P. Suresh Kumar, L. Korving, K.J. Keesman, M.C.M. van Loosdrecht, G.-J. Witkamp, Chem. Eng. J. 358, 160–169 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    X. Li, Y. Kuang, J. Chen, D. Wu, J. Colloid Interface Sci. 574, 197–206 (2020)

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    M.R. Faradonbeh, A.A. Dadkhah, A. Rashidi, S. Tasharofi, F. Mansourkhani, J. Inorg. Organomet. Polym. Mater. 28, 829–836 (2018)

    Article  CAS  Google Scholar 

  32. 32.

    S. Salehi, S. Mandegarzad, M. Anbia, J. Alloys Compd. 812, 152051 (2020)

    CAS  Article  Google Scholar 

  33. 33.

    S. Salehi, M. Anbia, F. Razavi, Environ. Prog. Sustain. Energy, e13302

  34. 34.

    S. Salehi, M. Anbia, Appl. Organomet. Chem. 32, e4390 (2018)

    Article  CAS  Google Scholar 

  35. 35.

    M. Ding, R.W. Flaig, H.-L. Jiang, O.M. Yaghi, Chem. Soc. Rev. 48, 2783–2828 (2019)

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    A. Azhar, Y. Li, Z. Cai, M.B. Zakaria, M.K. Masud, M.S.A. Hossain, J. Kim, W. Zhang, J. Na, Y. Yamauchi, Bull. Chem. Soc. Jpn. 92, 875–904 (2019)

    CAS  Article  Google Scholar 

  37. 37.

    Y. Zhang, X. Yang, H.-C. Zhou, Polyhedron 154, 189–201 (2018)

    CAS  Article  Google Scholar 

  38. 38.

    F. Eshraghi, M. Anbia, S. Salehi, J. Environ. Chem. Eng. 5, 4516–4523 (2017)

    CAS  Article  Google Scholar 

  39. 39.

    Z. Jia, S. Hao, J. Wen, S. Li, W. Peng, R. Huang, X. Xu, Microporous Mesoporous Mater. 305, 110322 (2020)

    CAS  Article  Google Scholar 

  40. 40.

    T. Tsuruoka, K. Inoue, A. Miyanaga, K. Tobiishi, T. Ohhashi, M. Hata, Y. Takashima, K. Akamatsu, J. Cryst. Growth 487, 1–7 (2018)

    CAS  Article  Google Scholar 

  41. 41.

    V.M. Aceituno Melgar, J. Kim, M.R. Othman, J. Ind. Eng. Chem. 28, 1–15 (2015)

    CAS  Article  Google Scholar 

  42. 42.

    X. Wei, D. Xu, K. Ge, S. Qi, Y. Chen, J. Inorg. Organomet. Polym. Mater. 1-7 (2020)

  43. 43.

    Y.-R. Lee, M.-S. Jang, H.-Y. Cho, H.-J. Kwon, S. Kim, W.-S. Ahn, Chem. Eng. J. 271, 276–280 (2015)

    CAS  Article  Google Scholar 

  44. 44.

    S. Wang, S. Zhang, J J. Inorg. Organomet. Polym. Mater. 27, 1317–1322 (2017)

    CAS  Article  Google Scholar 

  45. 45.

    K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Proc. Natl. Acad. Sci. 103, 10186–10191 (2006)

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Y.-T. Liao, S. Dutta, C.-H. Chien, C.-C. Hu, F.-K. Shieh, C.-H. Lin, K.C.-W. Wu, J. Inorg. Organomet. Polym. Mater. 25, 251–258 (2015)

    CAS  Article  Google Scholar 

  47. 47.

    P. Song, Y. Tu, X. Shen, A. Yuan, L. Zhai, S.A. Shah, J. Inorg. Organomet. Polym. Mater. 29, 2083–2089 (2019)

    CAS  Article  Google Scholar 

  48. 48.

    M. Wang, J. Zhang, X. Yi, X. Zhao, B. Liu, X. Liu, Appl. Surf. Sci. 507, 145166 (2020)

    CAS  Article  Google Scholar 

  49. 49.

    M. Jiang, X. Cao, D. Zhu, Y. Duan, J. Zhang, Electrochim. Acta 196, 699–707 (2016)

    CAS  Article  Google Scholar 

  50. 50.

    S. Salehi, M. Hosseinifard, Cellul. 1-28 (2020)

  51. 51.

    M.N. Shahrak, M. Ghahramaninezhad, M. Eydifarash, Environ. Sci. Pollut. Res. 24, 9624–9634 (2017)

    Article  CAS  Google Scholar 

  52. 52.

    X. Chen, X. Jiang, C. Yin, B. Zhang, Q. Zhang, J. Hazard. Mater. 367, 194–204 (2019)

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    L.S. Lai, Y.F. Yeong, N.C. Ani, K.K. Lau, A.M. Shariff, Part. Sci. Technol. 32, 520–528 (2014)

    CAS  Article  Google Scholar 

  54. 54.

    J. Cravillon, C.A. Schröder, H. Bux, A. Rothkirch, J. Caro, M. Wiebcke, CrystEngComm 14, 492–498 (2012)

    CAS  Article  Google Scholar 

  55. 55.

    M. Hassanimarand, M. Anbia, S. Salehi, ChemistrySelect 5, 6141–6152 (2020)

    CAS  Article  Google Scholar 

  56. 56.

    S. Salehi, S. Alijani, M. Anbia, Int. J. Biol. Macromol. 164, 105–120 (2020)

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    S. Wang, S. Zhang, X. Du, Y. Shen, Z. Ma, Adv. Mater. Sci. Eng. 2019 (2019)

  58. 58.

    J. Hou, J. Hao, Y. Wang, J. Liu, Chem. Res. Chinese U 35, 860–865 (2019)

    CAS  Article  Google Scholar 

  59. 59.

    I. Langmuir, J. Am. Ceram. Soc. 40, 1361–1403 (1918)

    CAS  Google Scholar 

  60. 60.

    H. Freundlich, Z. Phys. Chem. 57, 385–470 (1907)

    CAS  Google Scholar 

  61. 61.

    D. Jovanovic, Kolloid-Zeitschrift and Zeitschrift Fur Polymere. 235, 1203 (1969)

  62. 62.

    M. Temkin, Acta physiochim. URSS 12, 327–356 (1940)

    CAS  Google Scholar 

  63. 63.

    R. Katal, M.V. Sefti, M. Jafari, A.H.S. Dehaghani, S. Sharifian, M.A. Ghayyem, J. Ind. Eng. Chem. 18, 230–236 (2012)

    CAS  Article  Google Scholar 

  64. 64.

    F. Ntuli, T. Falayi, U. Thwanane, WIT Trans. Ecol. Environ. 202, 383–390 (2016)

    CAS  Article  Google Scholar 

  65. 65.

    J.E.E. Manage,

  66. 66.

    C. Namasivayam, D. Sangeetha, Desalination 219, 1–13 (2008)

    CAS  Article  Google Scholar 

  67. 67.

    H. Runtti, T. Luukkonen, M. Niskanen, S. Tuomikoski, T. Kangas, P. Tynjälä, E.-T. Tolonen, M. Sarkkinen, K. Kemppainen, J. Rämö, J. Hazard. Mater. 317, 373–384 (2016)

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    S. Hong, F.S. Cannon, P. Hou, T. Byrne, C. Nieto-Delgado, Carbon 73, 51–60 (2014)

    CAS  Article  Google Scholar 

  69. 69.

    W. Chen, H.-c. Liu, J. Cent. South University 21, 1974–1981 (2014)

    CAS  Article  Google Scholar 

  70. 70.

    E. Iakovleva, E. Mäkilä, J. Salonen, M. Sitarz, M. Sillanpää, Chem. Eng. J. 259, 364–371 (2015)

    CAS  Article  Google Scholar 

  71. 71.

    W. Cao, Z. Dang, X.-Q. Zhou, X.-Y. Yi, P.-X. Wu, N.-W. Zhu, G.-N. Lu, Carbohydr. Polym. 85, 571–577 (2011)

    CAS  Article  Google Scholar 

  72. 72.

    H. Gogoi, T. Leiviskä, J. Rämö, J. Tanskanen, Environ. Res. 175, 323–334 (2019)

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    S. Koumaiti, K. Riahi, F. Ounaies, B.B. Thayer, J. Environ. Sci. Eng. 5 (2011)

  74. 74.

    N. Priyantha, S. Perera, Water Resour. Manag. 14, 417–434 (2000)

    Article  Google Scholar 

  75. 75.

    Y. Ho, J. Ng, G. McKay, Sep. Purif. Methods 29, 189–232 (2000)

    CAS  Article  Google Scholar 

  76. 76.

    Y.-S. Ho, G. McKay, Process Biochem. 34, 451–465 (1999)

    CAS  Article  Google Scholar 

  77. 77.

    M. Low, Chem. Rev. 60, 267–312 (1960)

    CAS  Article  Google Scholar 

  78. 78.

    W.J. Weber, J.C. Morris, J. Sanit. Eng. Div. 89, 31–60 (1963)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Research Council of Iran University of Science and Technology (Tehran) for financial support of this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mansoor Anbia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khabazipour, M., Anbia, M. Process optimization and adsorption modeling using hierarchical ZIF-8 modified with Lanthanum and Copper for sulfate uptake from aqueous solution: Kinetic, Isotherm and Thermodynamic studies. J Inorg Organomet Polym (2021). https://doi.org/10.1007/s10904-021-01878-6

Download citation

Keywords

  • RSM
  • Sulfate
  • ZIF-8
  • Lanthanum
  • Copper