Enhanced E. coli Capturing Efficacy Over Magnetic Dextrin–Cobalt Sulfide Nanohybrid as a Promising Water Disinfection System


The aim of this research is synthesis of a promising bacterial elimination nanohybrid for water disinfection. Hence dextrin, a carbohydrate polymer composed of linear α-(1,4)-linked d-glucose, is used as an intermediate to prepare Fe3O4–dextrin–CoS nanohybrid. At the first step magnetic dextrin was prepared by one step ultrasound assisted route using Fe2+ as iron source and dextrin as capping agent. At the second step functional groups of dextrin was employed to trap Co2+ ions for decorating CoS at the biosorbent structure through refluxing route. The structure of the magnetic dextrin and nanohybrid was studied by XRD, EDX, FESEM, TGA and zeta potential measurement. EDX and TGA results confirmed that the CoS has been decorated with high density onto magnetite dextrin structure. The prepared nanohybrid has been employed to capture Escherichia coli as a sample pathogen from water solution. Effective parameters on bacterial elimination, i.e., pH, contact time, nanohybrid dosage and presence of anions have been studied. Results showed that at pH of 3.5, contact time of 15 min and nanohybrid dosage of 20 mg E. coli capturing efficacy was more than 99% which confirmed high efficiency of the nanosystem in bacteria elimination from water solution.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    J. Fawell, M.J. Nieuwenhuijsen, Contaminants in drinking water. Br. Med. Bull. 68, 199–208 (2003). https://doi.org/10.1093/bmb/ldg027

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Y. Junejo, M. Safdar, M.A. Akhtar, M. Saravanan, H. Anwar, Synthesis of tobramycin stabilized silver nanoparticles and its catalytic and antibacterial activity against pathogenic bacteria. J. Inorg. Organometal. Polym. Mater. 29, 111–120 (2019). https://doi.org/10.1007/s10904-018-0971-z

    CAS  Article  Google Scholar 

  3. 3.

    J. Huang, G. Huang, C. An, X. Xin, X. Chen, Y. Zhao, R. Feng, W. Xiong, Exploring the use of ceramic disk filter coated with Ag/ZnO nanocomposites as an innovative approach for removing Escherichia coli from household drinking water. Chemosphere 245, 125545 (2020). https://doi.org/10.1016/j.chemosphere.2019.125545

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    S.G. Mulamattathil, C. Bezuidenhout, M. Mbewe, C.N. Ateba, Isolation of environmental bacteria from surface and drinking water in Mafikeng, South Africa, and characterization using their antibiotic resistance profiles. J. Pathog. 2014, 371208 (2014). https://doi.org/10.1155/2014/371208

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    O. Infections, L.H. Gould, R.K. Mody, P. Clogher, A.B. Cronquist, K.N. Garman, S. Lathrop, C. Medus, N.L. Spina, T.H. Webb, P.L. White, K. Wymore, R.E. Gierke, B.E. Mahon, P.M. Griffin, Increased recognition of non-O157 Shiga toxin-producing Escherichia coli infections in the United States. Foodborne Pathog. Dis. 10, 453–460 (2013). https://doi.org/10.1089/fpd.2012.1401

    Article  Google Scholar 

  6. 6.

    B.C. Weimer, M.K. Walsh, C. Beer, R. Koka, X. Wang, Solid-phase capture of proteins, spores, and bacteria. Appl. Environ. Microbiol. 67, 1300–1307 (2001). https://doi.org/10.1128/AEM.67.3.1300

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Y. Jin, F. Liu, C. Shan, M. Tong, Y. Hou, Efficient bacterial capture with amino acid modified magnetic nanoparticles. Water Res. 50, 124–134 (2014). https://doi.org/10.1016/j.watres.2013.11.045

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    D. Vo, C. Lee, Antimicrobial sponge prepared by hydrophobically modified chitosan for bacteria removal. Carbohyd. Polym. 187, 1–7 (2018). https://doi.org/10.1016/j.carbpol.2018.01.082

    CAS  Article  Google Scholar 

  9. 9.

    P.Y. Furlan, A.J. Fisher, A.Y. Furlan, M.E. Melcer, D.W. Shinn, J.B. Warren, Magnetically recoverable and reusable nanoparticles for water disinfection. Invensions 2, 1–15 (2017). https://doi.org/10.3390/inventions2020010

    Article  Google Scholar 

  10. 10.

    M.J. Meziani, X. Dong, L. Zhu, L.P. Jones, G.E. Lecroy, F. Yang, S. Wang, P. Wang, Y. Zhao, L. Yang, R.A. Tripp, Y.P. Sun, Visible-light-activated bactericidal functions of carbon “quantum” dots. ACS Appl. Mater. Interf. 8, 10761–10766 (2016). https://doi.org/10.1021/acsami.6b01765

    CAS  Article  Google Scholar 

  11. 11.

    M. Zendehdel, B. Shoshtari, Y. Giuseppe, Removal of heavy metals and bacteria from aqueous solution by novel hydroxyapatite/zeolite nanocomposite, preparation, and characterization. J. Iran. Chem. Soc. 13, 1915–1930 (2016). https://doi.org/10.1007/s13738-016-0908-9

    CAS  Article  Google Scholar 

  12. 12.

    J. Liu et al., Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 47, 12578–12591 (2011)

    CAS  Article  Google Scholar 

  13. 13.

    S. Zavareh, E. Norouzi, Impregnation of GO with Cu2+ for enhancement of aniline adsorption and antibacterial activity. J. Water Process Eng. 20, 160–167 (2017). https://doi.org/10.1016/j.jwpe.2017.10.012

    Article  Google Scholar 

  14. 14.

    D. Mu, X. Mu, Z. Xu, Z. Du, G. Chen, Removing Bacillus subtilis from fermentation broth using alumina nanoparticles. Bioresour. Technol. 197, 508–511 (2015). https://doi.org/10.1016/j.biortech.2015.08.109

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    H.M.M. Ibrahim, M.S. Hassan, Characterization and antimicrobial properties of cotton fabric loaded with green synthesized silver nanoparticles. Carbohyd. Polym. 151, 841–850 (2016). https://doi.org/10.1016/j.carbpol.2016.05.041

    CAS  Article  Google Scholar 

  16. 16.

    S. Haq, K. Ansar, Y. Wajid, R. Muhammad, W. Muhammad, N. Ahmed, M. Imran, S. Nadia, S. Amreen, S. Mahfooz, U. Rehman, B. Khan, Green synthesis of silver oxide nanostructures and investigation of their synergistic effect with moxifloxacin against selected microorganisms. J. Inorg. Organometall. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01763-8

  17. 17.

    I. Kheshtzar, M. Ghorbani, M. Pashai, Facile synthesis of smartaminosilane modified-SnO2/porous silica nanocomposite for high efficiency removal of lead ions and bacterial inactivation. J. Hazard. Mater. 359, 19–30 (2018). https://doi.org/10.1016/j.jhazmat.2018.07.028

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    M. Padervand, F. Asgarpour, A. Akbari, B.E. Sis, G. Lammel, Hexagonal core–shell–[SiO2[–MOYI]Cl–]Ag nanoframeworks for efficient photodegradation of the environmental pollutants and pathogenic bacteria. J. Inorg. Organometall. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01095-2

  19. 19.

    Z. Wei, Z. Zhou, M. Yang, C. Lin, Z. Zhao, D. Huang, Z. Chen, J. Gao, Multifunctional Ag@Fe2O3 yolk–shell nanoparticles for simultaneous capture, kill, and removal of pathogen. J. Mater. Chem. 21, 16344 (2011). https://doi.org/10.1039/c1jm13691g

    CAS  Article  Google Scholar 

  20. 20.

    J.-A. Park, C.-G. Lee, S.-J. Park, J.-H. Kim, S.-B. Kim, Microbial removal using layered double hydroxides and iron (hydr)oxides immobilized on granular media. Environ. Eng. Res. 15, 149–156 (2010). https://doi.org/10.4491/eer.2010.15.3.149

    Article  Google Scholar 

  21. 21.

    Y. Jin, J. Deng, J. Liang, C. Shan, M. Tong, Efficient bacteria capture and inactivation by cetyltrimethylammonium bromide modified magnetic nanoparticles. Colloids Surf. B Biointerfaces 136, 659–665 (2015). https://doi.org/10.1016/j.colsurfb.2015.10.009

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    A. Orsuwan, S. Shankar, L.F. Wang, R. Sothornvit, J.W. Rhim, Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocolloids 60, 476–485 (2016). https://doi.org/10.1016/j.foodhyd.2016.04.017

    CAS  Article  Google Scholar 

  23. 23.

    L. Li, J. Iqbal, Y. Zhu, P. Zhang, W. Chen, A. Bhatnagar, Y. Du, Chitosan/Ag-hydroxyapatite nanocomposite beads as a potential adsorbent for the ef fi cient removal of toxic aquatic pollutants. Int. J. Biol. Macromol. 120, 1752–1759 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.190

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    R. Kaveh, H. Alijani, M.H. Beyki, Magnetic polyresorcinol@CoFe2O4@MnS nanoparticles for adsorption of Pb(II), Ag(I), Cr(VI) and bacteria from water solution. Polym. Bull. 77, 1893–1911 (2020). https://doi.org/10.1007/s00289-019-02835-7

    CAS  Article  Google Scholar 

  25. 25.

    M. Hossein Beyki, S. Ehteshamzadeh, S. Minaeian, F. Shemirani, Clean approach to synthesis of graphene like CuFe2O4 @ polysaccharide resin nanohybrid: Bifunctional compound for dye adsorption and bacterial capturing. Carbohyd. Polym. 174, 128–136 (2017). https://doi.org/10.1016/j.carbpol.2017.06.056

    CAS  Article  Google Scholar 

  26. 26.

    M. Hossein Beyki, H. Alijani, Y. Fazli, Biosorption of aqueous lead and nickel by solvent-free synthesized flake-like polysaccharide resin. Desal. Water Treatm. 3994, 1–10 (2016). https://doi.org/10.1080/19443994.2016.1173596

    CAS  Article  Google Scholar 

  27. 27.

    A. Mittal, R. Ahmad, I. Hasan, Iron oxide-impregnated dextrin nanocomposite: synthesis and its application for the biosorption of Cr(VI) ions from aqueous solution. Desal. Water Treatm. 57, 15133–15145 (2016). https://doi.org/10.1080/19443994.2015.1070764

    CAS  Article  Google Scholar 

  28. 28.

    S. Perret, C. Sabin, C. Dumon, M. Pokorná, C. Gautier, O. Galanina, S. Ilia, N. Bovin, M. Nicaise, M. Desmadril, N. Gilboa-Garber, M. Wimmerová, E.P. Mitchell, A. Imberty, Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. Biochem. J. 389, 325–332 (2005). https://doi.org/10.1042/BJ20050079

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    S.I. Siddiqui, S.A. Chaudhry, Nigella sativa plant based nanocomposite-MnFe2O4/BC: an antibacterial material for water purification. J. Clean. Prod. 200, 996–1008 (2018). https://doi.org/10.1016/j.jclepro.2018.07.300

    CAS  Article  Google Scholar 

  30. 30.

    F. Zhang, Z. Wu, Y. Huang, A.A. Keller, Successive removal of E. coli and a mixture of Pb2+ and malachite green from water via magnetic iron oxide/phosphate nanocomposites. Colloids Surf. A 578, 123598 (2019). https://doi.org/10.1016/j.colsurfa.2019.123598

    CAS  Article  Google Scholar 

  31. 31.

    J. Kumar, S. Kumar, M. Mishra, H. Sahoo, Amine functionalized magnetic iron oxide nanoparticles: synthesis, antibacterial activity and rapid removal of Congo red dye. J Mol. Liq. 282, 428–440 (2019). https://doi.org/10.1016/j.molliq.2019.03.033

    CAS  Article  Google Scholar 

  32. 32.

    G. Nangmenyi, X. Li, S. Mehrabi, E. Mintz, J. Economy, Silver-modified iron oxide nanoparticle impregnated fiberglass for disinfection of bacteria and viruses in water. Mater. Lett. 65, 1191–1193 (2011). https://doi.org/10.1016/j.matlet.2011.01.042

    CAS  Article  Google Scholar 

  33. 33.

    M. Ghanbarian, R. Nabizadeh, S. Nasseri, F. Shemirani, A.H. Mahvi, M.H. Beyki, A. Mesdaghinia, Potential of amino-riched nano-structured MnFe2O4@cellulose to biosorption of toxic Cr (VI): modeling, kinetic, equilibrium and comparing studies. Int. J. Biol. Macromol. 104, 465–480 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.060

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    K. El-Boubbou, C. Gruden, X. Huang, Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, de-contamination and strain differentiation supporting information Kheireddine El-Boubbou. J. Am. Chem. Soc. 129, 1–26 (2007). https://doi.org/10.1021/ja076086e

    CAS  Article  Google Scholar 

  35. 35.

    S. Zhan, Y. Yang, Z. Shen, J. Shan, Y. Li, S. Yang, D. Zhu, Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles. J. Hazard. Mater. 274, 115–123 (2014). https://doi.org/10.1016/j.jhazmat.2014.03.067

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    M.H. Beyki, J. Malakootikhah, F. Shemirani, S. Minaeian, Magnetic CoFe2O4 @ melamine based hyper-crosslinked polymer: a multivalent dendronized nanostructure for fast bacteria capturing from real samples. Process Saf. Environ. Prot. 116, 14–21 (2018). https://doi.org/10.1016/j.psep.2018.01.009

    CAS  Article  Google Scholar 

  37. 37.

    R.M. Khafagy, Synthesis, characterization, magnetic and electrical properties of the novel conductive and magnetic polyaniline/MgFe2O4 nanocomposite having the core-shell structure. J. Alloys Compd. 509, 9849–9857 (2011). https://doi.org/10.1016/j.jallcom.2011.07.008

    CAS  Article  Google Scholar 

  38. 38.

    M.H. Beyki, H. Alijani, Y. Fazli, Optimization using response surface methodology for fast removal of hazardous azo dye by γ-Fe2O3@CuO nanohybrid synthesized by sol–gel combustion. Res. Chem. Intermed. 43, 6245–6257 (2017). https://doi.org/10.1007/s11164-017-2987-3

    CAS  Article  Google Scholar 

  39. 39.

    T.R. Bastami, M.H. Entezari, Sono-synthesis of Mn3O4 nanoparticles in different media without additives. Chem. Eng. J. 164, 261–266 (2010). https://doi.org/10.1016/j.cej.2010.08.030

    CAS  Article  Google Scholar 

  40. 40.

    F. Shirkavand, M. Hossein, F. Shemirani, Enhanced naproxen removal over magnetic quaternized dextrin ionomer: response surface optimization, kinetics, isotherm and comparing study. Desal. Water Treatm. 23324, 1–19 (2018). https://doi.org/10.5004/dwt.2018.23324

    Article  Google Scholar 

  41. 41.

    G.R. Chaudhary, P. Bansal, S.K. Mehta, Recyclable CuS quantum dots as heterogeneous catalyst for Biginelli reaction under solvent free conditions. Chem. Eng. J. 243, 217–224 (2014). https://doi.org/10.1016/j.cej.2014.01.012

    CAS  Article  Google Scholar 

  42. 42.

    C. Deng, X. Ge, H. Hu, L. Yao, C. Han, D. Zhao, Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent Fenton-like catalytic activities. CrystEngComm 16, 2738–2745 (2014). https://doi.org/10.1039/C3CE42376J

    CAS  Article  Google Scholar 

  43. 43.

    K.A. Kumar, A. Pandurangan, S. Arumugam, M. Sathiskumar, Effect of Bi-functional hierarchical flower-like CoS nanostructure on its interfacial charge transport kinetics, magnetic and electrochemical behaviors for supercapacitor and DSSC applications. Sci. Rep. 9, 1–16 (2019). https://doi.org/10.1038/s41598-018-37463-0

    CAS  Article  Google Scholar 

  44. 44.

    X. Liu, Z. Lei, F. Liu, D. Liu, Z. Wang, Fabricating three-dimensional carbohydrate hydrogel microarray for lectin-mediated bacterium capturing. Biosensors Bioelectron. 58, 92–100 (2014). https://doi.org/10.1016/j.bios.2014.02.056

    CAS  Article  Google Scholar 

  45. 45.

    N. Tumin, A. Chuah, Adsorption of copper from aqueous solution by Elais Guineensis kernel activated carbon. J. Eng. Sci. Technol. 3, 180–189 (2008)

    Google Scholar 

  46. 46.

    M. Horká, F. Růžička, V. Holá, K. Šlais, Capillary isoelectric focusing of microorganisms in the pH range 2-5 in a dynamically modified FS capillary with UV detection. Anal. Bioanal. Chem. 385, 840–846 (2006). https://doi.org/10.1007/s00216-006-0508-0

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    A. Denis, A. Touhami, Y.F. Dufre, Probing microbial cell surface charges by atomic force microscopy. Langmuir 18, 9937–9941 (2002). https://doi.org/10.1021/la026273k

    CAS  Article  Google Scholar 

  48. 48.

    S. Rezaei-Zarchi, S. Imani, A.M. Zand, M. Saadati, Z. Zaghari, Study of bactericidal properties of carbohydrate-stabilized platinum oxide nanoparticles. Int. Nano Lett. 2, 21–26 (2012). https://doi.org/10.1186/2228-5326-2-21

    Article  Google Scholar 

  49. 49.

    X.X. Sheng, Y.P. Ting, S.O. Pehkonen, The influence of ionic strength, nutrients and pH on bacterial adhesion to metals. J. Colloid Interf. Sci. 321, 256–264 (2008). https://doi.org/10.1016/j.jcis.2008.02.038

    CAS  Article  Google Scholar 

  50. 50.

    M.C. van Loosdrecht, J. Lyklema, W. Norde, G. Schraa, A.J. Zehnder, The role of bacterial cell wall hydrophobicity in adhesion. Appl. Environ. Microbiol. 53, 1893–1897 (1987). https://doi.org/10.1128/AEM.53.8.1893-1897.1987.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    S. Shankar, R. Pangeni, J. Woo, J. Rhim, Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mater. Sci. Eng. C 92, 508–517 (2018). https://doi.org/10.1016/j.msec.2018.07.015

    CAS  Article  Google Scholar 

  52. 52.

    L. Wang, S. Xu, J. Li, Effects of phosphate on the transport of Escherichia coli O157:H7 in saturated quartz sand. Environ. Sci. Technol. 45, 9566–9573 (2011). https://doi.org/10.1021/es201132s

    CAS  Article  PubMed  Google Scholar 

Download references


The financial support from Chemistry and Chemical Engineering Research Center of Iran is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Mohammad Hassan Amini.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amini, M.H., Beyki, M.H. Enhanced E. coli Capturing Efficacy Over Magnetic Dextrin–Cobalt Sulfide Nanohybrid as a Promising Water Disinfection System. J Inorg Organomet Polym (2021). https://doi.org/10.1007/s10904-021-01876-8

Download citation


  • Bacteria
  • CoS
  • Dextrin
  • E. coli
  • Magnetite composite