Swelling and DC Conductivity Behaviour of Gelatin-Based Ferrogels


Gelatin-based systems have great potential in bio-medical applications. Here, we report the solvent uptake and DC conductivity of glutaraldehyde-crosslinked gelatin hydrogels and ferrogels. Both the parameters are found to depend on cross-linker (glutaraldehyde) and dopant (carbonyl iron) concentrations. Higher cross-linker proportions cause decrease in solvent uptake, equilibrium swelling ratio and DC conductivity. Solvent uptake is seen to increase while equilibrium swelling ratio and DC conductivity decrease with dopant concentration in the ferrogels. The solvent uptake and DC conductivity behaviour of the studied systems are explained on the basis of variations in pore size and polymer segmental mobility which, themselves, are functions of cross-linker and dopant concentrations. The diffusion process in the hydrogels and ferrogels obeys the second-order kinetic model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

Not applicable.


  1. 1.

    S. Kamila, Introduction, classification and applications of smart materials: an overview. Am. J. Appl. Sci. 10(8), 876–880 (2013). https://doi.org/10.3844/ajassp.2013.765.880

    Article  Google Scholar 

  2. 2.

    M. Zrinyi, Intelligent polymer gels controlled by magnetic fields. Colloid Polym. Sci. 278, 98–103 (2000). https://doi.org/10.1007/s003960050017

    CAS  Article  Google Scholar 

  3. 3.

    Y. Osada, J.-P. Gong, Soft and wet materials: polymer gels. Adv. Mater. 10(11), 827–838 (1998)

    CAS  Article  Google Scholar 

  4. 4.

    A. Sunaryono, E.G. Taufiq, A. Putra, I. Okazawa, N. Watanabe, S. Kojima, S. Ragmai, M. Soontaranon, S. Zainorr, Pratapa, Darminto, Small-angle X-ray scattering study on PVA/Fe3O4 magnetic hydrogels. Nano 11(3), 0650827 (2016). https://doi.org/10.1142/S1793292016500272

    CAS  Article  Google Scholar 

  5. 5.

    R. Hernandez, G. Lopez, D. Lopez, M. Vlisquez, C. Mijangos, Magnetic characterization of polyvinyl alcohol ferrogels films. J. Mater. Res. 22(8), 2211–2216 (2007). https://doi.org/10.1557/jmr.2007.0298

    CAS  Article  Google Scholar 

  6. 6.

    T.-Y. Liu, S.-H. Hu, K.-H. Liu, K.-M. Liu, S.-Y. Chen, Study on controlled drug permeation of magnetic-sensitive ferrogels: effect of Fe3O4 and PVA. J. Controll. Release 126, 228–236 (2008). https://doi.org/10.1016/j.jconrel.2007.12.006

    CAS  Article  Google Scholar 

  7. 7.

    T. Mitsumata, K. Ikeda, J.P. Gong, Y. Osada, D. Szabo, M. Zrinyi, Magnetism and compressive modulus of magnetic fluid containing gels. J. Appl. Phys. 85(12), 8451–8455 (1999). https://doi.org/10.1063/1.370626

    CAS  Article  Google Scholar 

  8. 8.

    P. Calvert, Gel sensors and actuators. MRS Bull. 33(3), 207–212 (2008). https://doi.org/10.1557/mrs2008.46

    Article  Google Scholar 

  9. 9.

    M. Babincova, D. Lesozczynska, P. Sourivong, P. Cicimanec, P. Babinec, Superparamagnetic gel as a novel material for electromagnetically induced hyperthermia. J. Magn. Magn. Mater. 225, 109–112 (2001). https://doi.org/10.1016/S0304-8853(00)01237-3

    CAS  Article  Google Scholar 

  10. 10.

    M. Zrinyi, D. Szabo, Muscular contraction mimicked by magnetic gels. Int. J. Mod. Phys. B 15(6&7), 557–563 (2001). https://doi.org/10.1142/S0217979201005015

    Article  Google Scholar 

  11. 11.

    J. Sharma, V.K. Aswal, P.S. Goyal, H.B. Bohidar, Small-angle neutron scattering studies of chemically cross-linked gelatin structures and gels. Macromolecules 34, 5215–5220 (2001). https://doi.org/10.1021/ma0022194

    CAS  Article  Google Scholar 

  12. 12.

    S. Yin, I. Ahmad, M.C.I.M. Amin, Synthesis of chemical cross-linked gelatin hydrogel reinforced with cellulose nanocrystals (CNC). AIP Conf. Proc. 1614, 375–380 (2014). https://doi.org/10.1063/1.4895226

    Article  Google Scholar 

  13. 13.

    S. Farris, J. Song, Q. Huang, Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J. Agric. Food Chem. 58, 998–1003 (2010). https://doi.org/10.1021/9031603

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    M. Foox, M. Zilberman, Drug delivery from gelatin-based systems. Expert Opin. Drug Deliv. 12(9), 1547–1563 (2015). https://doi.org/10.1517/17425247.2015.1037272

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    J.F. Martucci, R.A. Ruseckaite, A. Vazquez, Creep of glutaraldehyde-crosslinked gelatin films. Mater. Sci. Eng. A 435, 681–686 (2006). https://doi.org/10.1016/j.msea.2006.07.097

    CAS  Article  Google Scholar 

  16. 16.

    A. Bigi, G. Cojazzi, S. Panzavolta, K. Rubini, N. Roveri, Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 22, 763–768 (2001). https://doi.org/10.1016/s1042-9612(00)00236-2

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    H. Oikawa, H. Nakanishi, A light scattering study on gelatin gels chemically crosslinked in solution. Polymer 34(16), 3358–3361 (1993). https://doi.org/10.1016/0032-323861(93)90460-R

    CAS  Article  Google Scholar 

  18. 18.

    M. Helminger, B. Wu, T. Kololmann, D. Benke, D. Schqahn, V. Pipich, D. Faivre, D. Zahn, H. Colfen, Synthesis and characterization of gelatin-based magnetic hydrogels. Adv. Func. Mater. 24, 3187–3196 (2014). https://doi.org/10.1002/adfm.201303547

    CAS  Article  Google Scholar 

  19. 19.

    I. Migneault, C. Dartiguenave, M.J. Bertrand, K.C. Waldron, Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37(5), 790–802 (2004). https://doi.org/10.2144/04375RV01

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    J. Sharma, H.B. Bohidar, Gelatin-glutaraldehyde supramolecular structures studied by laser light scattering. Eur. Polymer J. 36, 1409–1418 (2000). https://doi.org/10.1016/S0014-3057(99)00206-2

    CAS  Article  Google Scholar 

  21. 21.

    Y. You, X. Sun, Q. Cui, B. Wang, J. Ma, The retention and drainage behavior of cross-linked gelatin with glutaraldehyde in a papermaking system. BioResources 11(3), 6162–6173 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    N.A. Choudhury, S. Sampath, A.K. Shukla, Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors. J. Electrochem. Soc. 155(1), A74–A81 (2008). https://doi.org/10.1149/1.2803501

    CAS  Article  Google Scholar 

  23. 23.

    L.H.H. Olde Damink, P.J. Dijkstra, M.J.A. Van Lyun, P.B. Van Wachem, P. Nieuwenhuis, J. Feijen, Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J. Mater. Sci. 6, 460–472 (1995). https://doi.org/10.1007/BF00123371

    CAS  Article  Google Scholar 

  24. 24.

    F. Ganji, S. Vashoghani-Farahanv, E. Vasheghani-Farahanv, Theoretical description of hydrogel swelling: a review. Iran. Polym. J. 19(5), 375–398 (2010)

    CAS  Google Scholar 

  25. 25.

    J. Ostrowska-Czubenko, M. Gierszewska, M. Pierog, pH-responsive hydrogel membranes based on modified chitosan: water transport and kinetics of swelling. J. Polym. Res. 22, 153 (2015). https://doi.org/10.1007/s10965-015-0786-3

    CAS  Article  Google Scholar 

  26. 26.

    X. Lou, T.V. Chirila, Swelling behavior and mechanical properties of chemically cross-linked gelatin gels for biomedical use. J. Biomater. Appl. 14, 184–191 (1999). https://doi.org/10.1177/088532829901400204

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    A.V. Teixeira, I. Morfin, F. Ehrburger-Dolle, C. Rochas, P. Panina, P. Licinio, E. Gcissler, Structure and magnetic properties of dilute ferrofluids suspended in gels. Compos. Sci. Technol. 63, 1105–1111 (2003). https://doi.org/10.1016/S0266-3538(03)00031-9

    CAS  Article  Google Scholar 

  28. 28.

    N.M. Wereley, A. Chauduri, J.-H. Yoo, S. John, S. Kotha, K. Suggs, R. Radhakrishnan, B.J. Love, S. Sudarshan, Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale. J. Intell. Mater. Syst. Struct. 17, 393–401 (2006). https://doi.org/10.1177/1045389X06056953

    CAS  Article  Google Scholar 

  29. 29.

    H. Schott, Swelling kinetics of polymers. J. Macromol. Sci. B 31(1), 1–9 (1992). https://doi.org/10.1080/00222349208215453

    CAS  Article  Google Scholar 

  30. 30.

    H. Dai, S. Ou, Y. Huang, Z. Liu, H. Huang, (2017), Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel, Cellulose,; https://doi.org/10.1007/s10570-017-1557-6

    Article  Google Scholar 

  31. 31.

    N.A. Choudhury, A.K. Shukla, S. Sampath, S. Pitchumani, Cross-linked polymer hydrogel electrolytes for electrochemical capacitors. J. Electrochem. Soc. 153(3), A614–A620 (2006). https://doi.org/10.1149/1.2164810

    CAS  Article  Google Scholar 

  32. 32.

    S.S. Sekhon, Conductivity behaviour of polymer gel electrolytes: role of polymer. Bull. Mater. Sci. 26(3), 321–328 (2003)

    CAS  Article  Google Scholar 

  33. 33.

    H. Ochiai, Y. Fujing, Y. Tadokoro, I. Murakami, Polyelectrolyte behaviour of poly(vinyl alcohol) in aqueous borax solutions. Polym. J. 14(5), 423–426 (1982). https://doi.org/10.1295/polymj.14.423

    CAS  Article  Google Scholar 

Download references


The authors express their gratitude to UGC-DAE-Consortium for Scientific Research, Mumbai Centre for funding this work through CRS-M-217. The supply of carbonyl iron powder by ISP Technologies, on complimentary basis, is gratefully acknowledged.


This work is supported by UGC-DAE-Consortium for Scientific Research, Mumbai Centre through CRS-M-217.

Author information



Corresponding author

Correspondence to Mathias B. Lawrence.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest involved in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lawrence, M.B., Joseph, J., Usapkar, T. et al. Swelling and DC Conductivity Behaviour of Gelatin-Based Ferrogels. J Inorg Organomet Polym 31, 129–137 (2021). https://doi.org/10.1007/s10904-020-01682-8

Download citation


  • Gelatin
  • Glutaraldehyde
  • Carbonyl iron
  • Swelling
  • DC conductivity