Synthesis and Characterization of ZnS/Ag2S Nanocomposites with Enhanced Kerr-Type Optical Nonlinearity

Abstract

Fabrication and performance of ZnS/Ag2S nanocomposites as an optical material for efficient Kerr nonlinearities have been described in this study. The formation and composition of samples were verified using combined techniques such as XRD, FTIR, FESEM, EDS and HRTEM. Spectrophotometer methodologies including UV–Vis DRS and PL spectroscopy were employed to analyze the linear optical characteristics. A red shift towards visible light absorption wavelengths was detected in the band-gap energy of ZnS/Ag2S nanocomposites as compared to the sole ZnS sample. The coupling process between ZnS and Ag2S confirmed a promoted charge-carrier separation at the interface of composite structures, supported by PL results. The nonlinear optical studies were performed using standard single-beam Z-scan technique under a 1064 nm Nd-YVO4 laser with 50 ns pulse width and 10 kHz repetition rate as an excitation source. The composite structure effect resulted in an enhanced Kerr-type optical susceptibility of about 52.9 × 10–6 esu, which was eight orders of magnitude higher than that of ZnS structures (7.1 × 10–6 esu).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    M. Sheik-Bahae, J. Wang, E.W. Van Stryland, IEEE J. Quantum Electron. 30, 249 (1994)

    CAS  Google Scholar 

  2. 2.

    H.R. Hamedi, Phys. B Condens. Matter 442, 60 (2014)

    CAS  Google Scholar 

  3. 3.

    Y. Wu, X. Yang, Appl. Phys. Lett. 91, 94104 (2007)

    Google Scholar 

  4. 4.

    Y. Wu, Phys. Rev. A 54, 1586 (1996)

    CAS  PubMed  Google Scholar 

  5. 5.

    S.H. Asadpour, H.R. Hamedi, M. Sahrai, J. Lumin. 132, 2188 (2012)

    Google Scholar 

  6. 6.

    W. Jiang, J. Song, H. Zheng, C. Wu, B. Yin, Y. Zhang, Opt. Commun. 282, 101 (2009)

    CAS  Google Scholar 

  7. 7.

    P.R. Hemmer, D.P. Katz, J. Donoghue, M. Cronin-Golomb, M.S. Shahriar, P. Kumar, Opt. Lett. 20, 982 (1995)

    CAS  PubMed  Google Scholar 

  8. 8.

    M. Yue, J. Si, L. Yan, Y. Yu, X. Hou, Opt. Mater. Express 8, 698 (2018)

    CAS  Google Scholar 

  9. 9.

    A. Imran, H.A. Badran, Q.M.A. Hassan, Illumination 8, 16 (2014)

    Google Scholar 

  10. 10.

    E. Garmire, Opt. Express 21, 30532 (2013)

    PubMed  Google Scholar 

  11. 11.

    B.A. Hemdan, A.M. El Nahrawy, A.-F.M. Mansour, A.B. Abou Hammad, Environ. Sci. Pollut. Res. 26, 9508 (2019)

    CAS  Google Scholar 

  12. 12.

    E.H. El-Khawas, A.A. Azab, A.M. Mansour, Struct. Mater. Chem. Phys. 241, 122335 (2020)

    CAS  Google Scholar 

  13. 13.

    A.M. ElNahrawy, A.M. Mansour, H.A. ElAttar, E.M.M. Sakr, A.A. Soliman, A.B. Abou Hammad, J. Mater. Sci. Mater. Electron. 31, 6224 (2020)

    CAS  Google Scholar 

  14. 14.

    A.B. Abou Hammad, A. Elzwawy, A.M. Mansour, M.M. Alam, A.M. Asiri, M.R. Karim, M.M. Rahman, A.M. El Nahrawy, New J. Chem. 44, 7941 (2020)

    CAS  Google Scholar 

  15. 15.

    Y. Fu, R.A. Ganeev, G.S. Boltaev, S.K. Maurya, V.V. Kim, C. Zhao, A. Rout, C. Guo, Nanophotonics 8, 849 (2019)

    CAS  Google Scholar 

  16. 16.

    G.S. Boltaev, D.J. Fu, B.R. Sobirov, M.S. Smirnov, O.V. Ovchinnikov, A.I. Zvyagin, R.A. Ganeev, Opt. Express 26, 13865 (2018)

    CAS  PubMed  Google Scholar 

  17. 17.

    S.M. Mosavi, H. Kafashan, Superlattices Microstruct. 126, 139 (2019)

    CAS  Google Scholar 

  18. 18.

    A. Azmand, H. Kafashan, J. Alloys Compd. 779, 301 (2019)

    CAS  Google Scholar 

  19. 19.

    K. Vijai Anand, G. Vinitha, M. Karl Chinnu, R. Mohan, R. Jayavel, J. Nonlinear Opt. Phys. Mater. 24, 1550016 (2015)

    CAS  Google Scholar 

  20. 20.

    T.D. Krauss, F.W. Wise, Appl. Phys. Lett. 65, 1739 (1994)

    CAS  Google Scholar 

  21. 21.

    J.W.M. Chon, P. Zijlstra, M. Gu, J. van Embden, P. Mulvaney, Appl. Phys. Lett. 85, 5514 (2004)

    CAS  Google Scholar 

  22. 22.

    P. Kumbhakar, M. Chattopadhyay, A.K. Mitra, in Proceedings of ICOP 2009-International Conference on Optics and Photonics, 2009

  23. 23.

    K. Liu, J. Li, Q. Liu, M. Meng, L. Hu, C. Xu, J. Alloys Compd. 718, 122 (2017)

    CAS  Google Scholar 

  24. 24.

    M.C. Divyasree, N.K.S. Narendran, K. Chandrasekharan, in Third Order Nonlinear Optical Studies of ZnS Nanostructures Synthesized by Laser Ablation Technique. Recent Trends in Materials Science and Applications (Springer, Cham, 2017), pp. 171–178

  25. 25.

    Z. Dehghani, S. Nazerdeylami, E. Saievar-Iranizad, M.H.M. Ara, J. Phys. Chem. Solids 72, 1008 (2011)

    CAS  Google Scholar 

  26. 26.

    X. Jia, J. Cao, H. Lin, M. Zhang, X. Guo, S. Chen, Appl. Catal. B Environ. 204, 505 (2017)

    CAS  Google Scholar 

  27. 27.

    J. Wang, X.-L. Liu, A.-L. Yang, G.-L. Zheng, S.-Y. Yang, H.-Y. Wei, Q.-S. Zhu, Z.-G. Wang, Appl. Phys. A 103, 1099 (2011)

    CAS  Google Scholar 

  28. 28.

    J. Kaur, A. Gupta, O.P. Pandey, Sol. Energy 176, 678 (2018)

    CAS  Google Scholar 

  29. 29.

    Y. Liu, P. Chen, Z.-H. Wang, F. Bian, L. Lin, S.-J. Chang, G.-G. Mu, Laser Phys. 19, 1886 (2009)

    CAS  Google Scholar 

  30. 30.

    S.K. Evstropiev, A.S. Kulagina, K.S. Evstropyev, E.V. Kolobkova, N.V. Nikonorov, I.P. Soshnikov, K.V. Oreshkina, A.I. Khrebtov, Opt. Spectrosc. 125, 640 (2018)

    CAS  Google Scholar 

  31. 31.

    V.S. Dneprovskii, E.A. Zhukov, M.V. Kozlova, A.M. Smirnov, T. Wumaier, Mosc. Univ. Phys. Bull. 67, 201 (2012)

    Google Scholar 

  32. 32.

    K. Yu, Y. Yang, J. Wang, X. Tang, Q.-H. Xu, G.P. Wang, Nanotechnology 29, 255703 (2018)

    PubMed  Google Scholar 

  33. 33.

    S. Lin, Y. Feng, X. Wen, P. Zhang, S. Woo, S. Shrestha, G. Conibeer, S. Huang, J. Phys. Chem. C 119, 867 (2014)

    Google Scholar 

  34. 34.

    J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, J. Tang, Mater. Res. Bull. 106, 113 (2018)

    CAS  Google Scholar 

  35. 35.

    Y. Xie, S.H. Heo, Y.N. Kim, S.H. Yoo, S.O. Cho, Nanotechnology 21, 15703 (2009)

    Google Scholar 

  36. 36.

    M.C. Brelle, J.Z. Zhang, L. Nguyen, R.K. Mehra, J. Phys. Chem. A 103, 10194 (1999)

    CAS  Google Scholar 

  37. 37.

    X. Wen, S. Wang, Y. Xie, X.-Y. Li, S. Yang, J. Phys. Chem. B 109, 10100 (2005)

    CAS  PubMed  Google Scholar 

  38. 38.

    A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, G.J. Wang, Electrochem. Commun. 12, 1158 (2010)

    CAS  Google Scholar 

  39. 39.

    R. Karimzadeh, H. Aleali, N. Mansour, Opt. Commun. 284, 2370 (2011)

    CAS  Google Scholar 

  40. 40.

    H. Aleali, N. Mansour, M. Mirzaie, World Acad. Sci. Eng. Technol. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 8, 1274 (2015)

    Google Scholar 

  41. 41.

    M. Dehghanipour, M. Khanzadeh, M. Karimipour, M. Molaei, Opt. Laser Technol. 100, 286 (2018)

    CAS  Google Scholar 

  42. 42.

    M. Khanzadeh, M. Dehghanipour, M. Karimipour, M. Molaei, Opt. Mater. (Amst.) 66, 664 (2017)

    CAS  Google Scholar 

  43. 43.

    A. Haghighatzadeh, M. Kiani, B. Mazinani, J. Dutta, J. Mater. Sci. Mater. Electron. 31, 1283 (2020)

    CAS  Google Scholar 

  44. 44.

    M.A. Dil, A. Haghighatzadeh, B. Mazinani, Bull. Mater. Sci. 42, 248 (2019)

    Google Scholar 

  45. 45.

    M. Kuppayee, G.K.V. Nachiyar, V. Ramasamy, Appl. Surf. Sci. 257, 6779 (2011)

    CAS  Google Scholar 

  46. 46.

    B.S.R. Devi, R. Raveendran, A.V. Vaidyan, Pramana 68, 679 (2007)

    CAS  Google Scholar 

  47. 47.

    I. Parvaneh, S. Samira, N. Mohsen, Chin. Phys. B 24, 46104 (2015)

    Google Scholar 

  48. 48.

    M. Shakouri-Arani, M. Salavati-Niasari, Spectrochim Acta Part A Mol. Biomol. Spectrosc. 133, 463 (2014)

    CAS  Google Scholar 

  49. 49.

    D.A. Reddy, R. Ma, M.Y. Choi, T.K. Kim, Appl. Surf. Sci. 324, 725 (2015)

    Google Scholar 

  50. 50.

    M. Batvandi, A. Haghighatzadeh, B. Mazinani, Appl. Phys. A 126, 1–16 (2020)

    CAS  Google Scholar 

  51. 51.

    X. Yang, H. Xue, J. Xu, X. Huang, J. Zhang, Y.-B. Tang, T.-W. Ng, H.-L. Kwong, X.-M. Meng, C.-S. Lee, ACS Appl. Mater. Interfaces 6, 9078 (2014)

    CAS  PubMed  Google Scholar 

  52. 52.

    G.S. Thool, M. Baid, A.K. Singh, N.P. Singh, Mater. Today Proc. 5, 15285 (2018)

    CAS  Google Scholar 

  53. 53.

    H. Tang, G. Xu, L. Weng, L. Pan, L. Wang, Acta Mater. 52, 1489 (2004)

    CAS  Google Scholar 

  54. 54.

    A.P. Gaikwad, C.A. Betty, A. Kumar, R. Sasikala, Mater. Sci. Semicond. Process. 86, 139 (2018)

    CAS  Google Scholar 

  55. 55.

    D.K. Mondal, C. Borgohain, N. Paul, J.P. Borah, Phys. B Condens. Matter 567, 122 (2019)

    CAS  Google Scholar 

  56. 56.

    F. Amirian, M. Molaei, M. Karimipour, A.R. Bahador, J. Lumin. 196, 174 (2018)

    CAS  Google Scholar 

  57. 57.

    D. Vasudevan, R.R. Gaddam, A. Trinchi, I. Cole, J. Alloys Compd. 636, 395 (2015)

    CAS  Google Scholar 

  58. 58.

    H. Zhang, B. Wei, L. Zhu, J. Yu, W. Sun, L. Xu, Appl. Surf. Sci. 270, 133 (2013)

    CAS  Google Scholar 

  59. 59.

    L. Zhang, M. Jaroniec, Appl. Surf. Sci. 430, 2 (2018)

    CAS  Google Scholar 

  60. 60.

    R. Ghosh Chaudhuri, S. Paria, J. Phys. Chem. C 117, 23385 (2013)

    CAS  Google Scholar 

  61. 61.

    H. Li, F. Xie, W. Li, H. Yang, R. Snyders, M. Chen, W. Li, Catal. Surv. Asia 22, 156 (2018)

    CAS  Google Scholar 

  62. 62.

    R. Del Coso, J. Solis, JOSA B 21, 640 (2004)

    Google Scholar 

  63. 63.

    H. Qian, Y. Xiao, Z. Liu, Nat. Commun. 7, 13153 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1741 (1996)

    CAS  Google Scholar 

  65. 65.

    R. Deepika, D. Dhar, D. Mohan, Mod. Phys. Lett. B 29, 1550209 (2015)

    CAS  Google Scholar 

  66. 66.

    J.L.J. Pérez, R. Gutiérrez-Fuentes, J.F.S. Ramírez, O.U.G. Vidal, D.E. Téllez Sánchez, Z.N.C. Pacheco, A.C. Orea, J.A.F. García, Adv. Nanoparticles 2, 223 (2013)

    Google Scholar 

  67. 67.

    W. Balogun, Y.K. Sanusi, A.O. Aina, Int. J. Dev. 08, 18486 (2018)

    Google Scholar 

  68. 68.

    B. Al-Nashy, S.M.M. Ameen, A.H. Al-Khursan, Results Phys. 6, 189 (2016)

    Google Scholar 

Download references

Acknowledgements

The current study was partially supported by Ahvaz Branch of Islamic Azad University and the authors would like to thank the Research Council for their generous support of this work.

Funding

This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Azadeh Haghighatzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiani, M., Haghighatzadeh, A. Synthesis and Characterization of ZnS/Ag2S Nanocomposites with Enhanced Kerr-Type Optical Nonlinearity. J Inorg Organomet Polym 31, 229–238 (2021). https://doi.org/10.1007/s10904-020-01681-9

Download citation

Keywords

  • Composite structures
  • Kerr nonlinearity
  • Third-order optical susceptibility
  • Z-scan technique