Synthesis, Structural and Optical Properties of Er and V Codoping ZnO Nanoparticles

Abstract

Here we are reporting sol–gel synthesis diluted magnetic (Er, V)-co-doped ZnO nanocrystals as a dilute semiconductor. The structural and morphological properties were studied using some techniques such as X-rays diffraction (XRD) and transmission electron microscopy (TEM). The optical properties were characterized by Spectrophotometer UV–Visible–IR and photoluminescence (PL). The structural properties showed the appearance of wurtzite structure with a crystallite size around 45 nm and a secondary phase has been detected, attributed to Erbium complex. Raman measurements show that the good quality of the crystals is also maintained after doping, which is confirmed by the coexistence of the polar and non-polar modes E1 and E2, respectively. The increase in the doping concentration of Er caused a decrease in band gap energy. PL shows the appearance of some defects between the valence and conduction band of ZnO linked to doping with Er.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    J. Liu, M.D. Rojas-Andrade, G. Chata, Y. Peng, G. Roseman, J.-E. Lu, G.L. Millhauser, C. Saltikov, S. Chen, Nanoscale 10, 158–166 (2018)

    CAS  Google Scholar 

  2. 2.

    T. Guo, Y. Zhang, Y. Luo, C.W. Nan, Y.H. Lin, Mater. Lett. 108, 273–275 (2013)

    CAS  Google Scholar 

  3. 3.

    T. Movlarooy, J. Magn. Magn Mater. 441, 139–148 (2017)

    CAS  Google Scholar 

  4. 4.

    D. Panda, T.-Y. Tseng, J. Mater. Sci. 48, 6849–6877 (2013)

    CAS  Google Scholar 

  5. 5.

    F. Golmar, M. Villafuerte, A.M. Navarro, C.E.R. Torres, J. Barzola-Quiquia, P. Esquinazi, S.P. Heluani, J. Mater. Sci. 45, 6174–6178 (2010)

    CAS  Google Scholar 

  6. 6.

    Y. Tian, S.R. Bakaul, T. Wu, Nanoscale 4, 1529–1540 (2012)

    CAS  PubMed  Google Scholar 

  7. 7.

    A. Zunger, S. Lany, H. Raebiger, Physics 3, 53 (2010)

    Google Scholar 

  8. 8.

    M. Zirak, H. Oveisi, J. Lin, Y. Bando, A.A. AlShehri, J. Kim, Y. Ide, M.S.A. Hossain, V. Malgras, Y. Yamauchi, Bull. Chem. Soc. Jpn. 91, 1556–1560 (2018)

    Google Scholar 

  9. 9.

    M. Kumar, A. Mehta, A. Mishra, J. Singh, M. Rawat, S. Basu, Mater. Lett. 215, 121–124 (2018)

    CAS  Google Scholar 

  10. 10.

    J. El Ghoul, J. Mater. Sci. 27, 2159 (2016)

    Google Scholar 

  11. 11.

    J. El Ghoul, N. Bouguila, S.A. Gómez-Lopera, L. El Mir, Superlattices Microstruct. 64, 451 (2013)

    Google Scholar 

  12. 12.

    J. Singh, A. Rathi, M. Rawat, V. Kumar, K.H. Kim, Composites B 166, 361–370 (2019)

    CAS  Google Scholar 

  13. 13.

    L.T. Chang, C.Y. Wang, J. Tang, T. Nie, W. Jiang, C.P. Chu, S. Arafin, L. He, M. Afsal, L.J. Chen, K.L. Wang, Nano Lett. 14, 1823–1829 (2014)

    CAS  PubMed  Google Scholar 

  14. 14.

    G.S. Lotey, J. Singh, N.K. Verma, J. Mater. Sci. 24, 3611–3616 (2013)

    CAS  Google Scholar 

  15. 15.

    G.J. Huang, J.B. Wang, X.L. Zhong, G.C. Zhou, H.L. Yan, J. Mater. Sci 42, 6464–6468 (2007)

    CAS  Google Scholar 

  16. 16.

    K. Srinivas, S.M. Rao, P.V. Reddy, J. Nanopart. Res. 13, 817–837 (2011)

    CAS  Google Scholar 

  17. 17.

    G. Vijayaprasath, R. Murugan, Y. Hayakawa, G. Ravi, J. Lumin. 178, 375–383 (2016)

    CAS  Google Scholar 

  18. 18.

    A.G. El Hachimi, H. Zaari, A. Benyoussef, M. El Yadari, A. ElKenz, J. Rare Earths 32, 715–721 (2014)

    Google Scholar 

  19. 19.

    G.H. Mhlongo, K. Shingange, Z.P. Tshabalala, B.P. Dhonge, F.A. Mahmoud, B.W. Mwakikunga, D.E. Motaung, Appl. Surf. Sci. 390, 804–815 (2016)

    CAS  Google Scholar 

  20. 20.

    A. Sutka, T. Kaambre, U. Joost, K. Kooser, M. Kook, R.F. Duarte, V. Kisand, M. Maiorov, N. Dobelin, K. Smits, J. Alloys Compd. 763, 164–172 (2018)

    CAS  Google Scholar 

  21. 21.

    J. El Ghoul, C. Barthou, L. El Mir, Physica E 44, 1910 (2012)

    Google Scholar 

  22. 22.

    J. El Ghoul, C. Barthou, L. El Mir, J. Superlattices Microstruct. 51, 942 (2012)

    Google Scholar 

  23. 23.

    J. El Ghoul, C. Barthou, M. Saadoun, L. El Mir, J. Phys. B 405, 597 (2010)

    Google Scholar 

  24. 24.

    T. Akilan, N. Srinivasan, R. Saravasan, P. Chowdury, Mater. Manuf. Process. 29, 780–788 (2014)

    CAS  Google Scholar 

  25. 25.

    R. Krithiga, G. Chandrasekaran, J. Cryst. Growth 311, 4610–4614 (2009)

    CAS  Google Scholar 

  26. 26.

    J. Lang, J. Wang, Q. Zhang, S. Xu, D. Han, J. Yang, Q. Han, L. Yang, Y. Sui, X. Li, X. Liu, Mater. Sci. Semicond. Process. 41, 32 (2016)

    CAS  Google Scholar 

  27. 27.

    R. Tomar, P. Kumar, A. Kumar, A. Kumar, P. Kumar, R.P. Pant, K. Asokan, Solid State Sci 67, 8–12 (2017)

    CAS  Google Scholar 

  28. 28.

    P. Kumar, J.P. Singh, H.K. Malik, S. Gautam, K.H. Chae, K. Asokan, Superlattices Microstruct. 78, 183–189 (2015)

    CAS  Google Scholar 

  29. 29.

    K. Vijayalakshmi, A. Renitta, K. Karthick, Ceram. Int. 40, 6171–6177 (2014)

    CAS  Google Scholar 

  30. 30.

    J. Lang, X. Li, J. Yang, Q. Han, Y. Yan, M. Gao, D. Wang, L. Yang, X. Liu, R. Wang, S. Yang, Cryst. Res. Technol. 46, 691–696 (2011)

    CAS  Google Scholar 

  31. 31.

    J. Lang, J. Wang, Q. Zhang, S. Xu, D. Han, J. Yang, Q. Han, L. Yang, Y. Sui, X. Li, X. Liu, Mater. Sci. Semicond. Process 41, 32–37 (2016)

    CAS  Google Scholar 

  32. 32.

    V.E. Kaydashev, E.M. Kaidashev, M. Peres, T. Monteiro, M.R. Correia, N.A. Sobolev, L.C. Alves, N. Franco, E. Alves, J. Appl. Phys. 106, 093501 (2009)

    Google Scholar 

  33. 33.

    P. Kumar, V. Sharma, A. Sarwa, A. Kumar, R. Goyal, K. Sachdev, S. Annapoorni, K. Asokan, D. Kanjilal, RSC Adv. 6, 89242 (2016)

    CAS  Google Scholar 

  34. 34.

    H.L. Liu, L.H. Fei, H.B. Liu, J.H. Yang, X. Jin, M. Gao, Y. Liu, X. Cheng, X. Zhang, J. Mater. Sci. 24, 58–63 (2013)

    Google Scholar 

  35. 35.

    M.K. Gupta, B. Kumar, J. Mater. Chem. 21, 14559 (2011)

    CAS  Google Scholar 

  36. 36.

    R. Abaira, E. Buffagni, A. Matoussi, H. Khmakhem, C. Ferrari, Superlattices Microstruct. 86, 438–445 (2015)

    CAS  Google Scholar 

  37. 37.

    R. Raji, K.G. Gopchandran, J. Sci. 2, 51–58 (2017)

    Google Scholar 

  38. 38.

    L. Yang, Z. Wang, Z. Zhang, Y. Sun, M. Gao, J. Yang, Y. Yan, J. Appl. Phys. 113, 033514 (2013)

    Google Scholar 

  39. 39.

    D.K. Sharma, K.K. Sharma, V. Kumar, A. Sharma, J. Mater. Sci. 29, 3840–3849 (2018)

    CAS  Google Scholar 

  40. 40.

    L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, A. Deepthy, B. Krishnan, J. Appl. Phys. 102, 063524 (2007)

    Google Scholar 

  41. 41.

    B.E. Filali, T.V. Torchynska, J.L.R. García, J.L.C. Espinola, G. Polupan, Mater. Sci. Semicond. Process. 96, 161–166 (2019)

    Google Scholar 

  42. 42.

    F. Pavón, A. Urbiet, P. Fernández, J. Lumin. 195, 396–401 (2018)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. El Ghoul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Ghoul, J., Al-Harbi, F.F. Synthesis, Structural and Optical Properties of Er and V Codoping ZnO Nanoparticles. J Inorg Organomet Polym 31, 272–278 (2021). https://doi.org/10.1007/s10904-020-01678-4

Download citation

Keywords

  • ZnO
  • Rare earth doping
  • Nanoparticles
  • Structural properties
  • Photoluminescence