Design, Construction and Characterization of Intelligence Polymer Coated Core–Shell Nanocarrier for Curcumin Drug Encapsulation and Delivery in Lung Cancer Therapy Purposes


Among the considerable anticancer agents, curcumin (CU) drug has been confirmed to be very extraordinary towards any type of cancer cells. Chitosan coated core–shell nanocarrier was prepared and used as a nano-carrier for encapsulation of CU drug (Fe@Au-CU-CS-FA NP’s) through a reverse micro-emulsion method. Each shape and size and polydispersity (PDI) properties in addition to the contents of Fe@Au core–shell and Fe@Au-CU-CS-FA NP’s were studied utilizing zeta potential particles analyzer, Atomic Force Microscope, Scanning Electron Microscopy, Energy Dispersive X-rays spectroscopy, and High-Resolution Transmission Electron Microscopy. On the other hand, those nanosystems characterized by UV–Visible spectrophotometer. Fe@Au NP’s possess a nearly uniform size of around ~ 63.65 nm and a spherical form as core–shell at temperature 38 °C and the Fe@Au-CU-CS-FA NP’s possess a nearly uniform size of around 206.5 nm and a spherical form. EDX results for Fe@Au core–shell structure show percentage ratio of (Fe, Au) elements, and the results of Fe@Au-CU-CS-FA NP’s show percentage ratio of (Fe, Au, C, O, N) elements. Fe@Au-CU-CS-FA NP’s use as drug delivery to treat different types of cancers. Finally, the results showed that synthesized nanosystems are noticeably potent for cancer therapy purposes due to their suitable characteristics such as small size, spherical shape, negligible aggregation, good polydispersity (PDI), correct content and appropriate magnetic responsive properties. This Fe@Au-CU-CS-FA also exhibited a controlled release of CU at 37 °C in (7.4) and (5.4) pH. Afterward, the ideal dose and therapeutic effects of (Fe@Au-CU-CS-FA) for lung cancer and normal cell lines were evaluated through MTT assay. Then the flow cytometry assay shows significant cell apoptosis induction by Fe@Au-CU-CS-FA. The results confirmed that Fe@Au-CU-CS-FA retained considerable antitumor effects; no adverse consequences were detected for normal cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    J. Jacob, J.T. Haponiuk, S. Thomas, S. Gopi, Mater. Today Chem. J. 9, 43–55 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    K. Kaviyarasu, N. Geetha, S. Sivaranjani, A. Ayeshamariam, J. Kennedy, R. Ladchumananandasiivam, U.U. Gomes, M. Maaza, Mater. Sci. Eng. C J. 74, 325–333 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    C.M. Magdalane, K. Kaviyarasu, A. Raja, M.V. Arularasu, G.T. Mola, A.B. Isaev, N.A. Al-Dhabi, M.V. Arasu, B. Jeyaraj, J. Kennedy, M. Maaza, Photochem. Photobiol. B: Biol. J. 185, 275–282 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    S. Patra, E. Roy, P. Karfa, S. Kumar, R. Madhuri, P.K. Sharma, ACS Appl. Mater. Interface 7(17), 9235–9246 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    W. Wang, J. Luo, Q. Fan, M. Suzuki, I.S. Suzuki, M.H. Engelhard, Y. Lin, N. Kim, J.Q. Wang, C.J. Zhong, Phys. Chem. B J. 109, 21593–21601 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    L. Shen, B. Li, Y. Qiao, Mater. J. 11, 324 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    N.V. Majeti, R. Kumar, React. Func. Polym. J. 46, 1–27 (2000).

    Article  Google Scholar 

  8. 8.

    A.B. Schnürch, S. Dünnhaupt, Eur. Pharm. Biophys. J. 81, 463–469 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    A.A. Salih, A. Nazar, A.J. Haider, Dev. eSyst. Eng. 10(4), 726–729 (2019).

    Article  Google Scholar 

  10. 10.

    M.P. Patel, R.R. Patel, J.K. Patel, Pharm. Pharm. Sci. J. 13(4), 536–557 (2010)

    CAS  Article  Google Scholar 

  11. 11.

    L.D. Tran, N.M.T. Hoang, T.T. Mai, H.V. Tran, N.T. Nguyen, T.D. Tran, M.H. Doa, Q.T. Nguyen, D.G. Pham, T.P. Ha, H.V. Le, P.X. Nguyen, Colloids Surf. A Physiochem. Eng. Asp. J. 371, 104–112 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    P. Ines, A. Niuris, H. Angeles, Curr. Drug Discov. Tech. J. 5, 333–341 (2008)

    Article  Google Scholar 

  13. 13.

    A.A. Atiyah, A.J. Haider, R.M. Dhahi, IET Nanobiotechnol. 13(597), 601 (2019).

    Article  Google Scholar 

  14. 14.

    M. Rajan, V. Raj, Int. Rev. Chem. Eng. J. 5, 145–155 (2013)

    Google Scholar 

  15. 15.

    A. Mukerjee, J.K. Vishwanatha, Antivir. Res. J. 483, 3867–3876 (2009)

    Google Scholar 

  16. 16.

    Z. Zheng, X. Zhang, D. Carbo, C. Clark, C.A. Nathan, Y. Lvov, Langmuir 512, 7679–7681 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    M. Sreejayan, J. Rao, P. Pharm, Pharm. Pharmacol. J. 49, 105–107 (1997).

    CAS  Article  Google Scholar 

  18. 18.

    H. Ammon, M. Wahl, Planta Med. J. 57, 1–7 (1991).

    CAS  Article  Google Scholar 

  19. 19.

    B. Isabelle, O. Hiroshi, Biochem. Biophys. Res. Commun. J. 206, 533–540 (1995).

    Article  Google Scholar 

  20. 20.

    M. Dikshit, L. Rastogi, R. Shukla, R.C. Srimal, Ind. Med. Res. J. 101, 31–35 (1995)

    CAS  Google Scholar 

  21. 21.

    C.V. Rao, A. Rivenson, B. Simi, B.S. Reddy, Cancer. Res. J. 55, 259–266 (1995)

    CAS  Google Scholar 

  22. 22.

    Y. Kiso, Y. Suzuki, N. Watanabe, Y. Oshima, H. Hikino, Planta Med. J. 49, 185–187 (1983).

    CAS  Article  Google Scholar 

  23. 23.

    G.B. Mahady, S.L. Pendl, G. Yun, Z.Z. Lu, Antivir. Res. J. 22, 4179 (2002)

    CAS  Google Scholar 

  24. 24.

    B. Aggarwal, C. Sundaram, N. Malani, H. Ichikawa, Y. Surh, S. Shishodia, The molecular targets and therapeutic uses of curcumin in health and disease (Springer, Boston, 2007), pp. 1–76

    Google Scholar 

  25. 25.

    S. Mancarella, V. Greco, F. Baldassarre, D. Vergara, M. Maffia, S. Leporatti, Macromol. Biosci. J. 15, 1365–1374 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    K.L. Naira, A. Kumar, T. Thulasidasan, G. Deepa, R.J. Anto, G.S.V. Kumar, Int. Pharm. J. 425, 44–52 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    C. Mohanty, S.K. Sahoo, Biomaterials 31, 6597–6611 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    X.W. Wang, G.T. Feia, K. Zheng, Z. Jin, L.D. Zhang, Appl. Phys. Lett. 88, 173114 (2006).

    CAS  Article  Google Scholar 

  29. 29.

    S. Lai, J. Carlsson, L. Allen, Appl. Phys. Lett. 72, 1098 (1998).

    CAS  Article  Google Scholar 

  30. 30.

    I.Y. Goon, L.M.H. Lai, M. Lim, P. Munroe, J.J. Gooding, R. Amal, Chem. Mater. J. 21(4), 673–681 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    M. Ravichandran, S. Velumani, T. Jose, A. Vera, L. Leija, Artif. Cells Nanomed. Biotechnol (2018).

    Article  Google Scholar 

  32. 32.

    N.R. Vokhidova, K.H. Ergashev, SSh Rashidova, J. Inorg. Organomet. Polym. (2020).

    Article  Google Scholar 

  33. 33.

    G. Unsoy, S. Yalcin, R. Khodadust, G. Gunduz, U. Gunduz, Nanoparticle Res. J. 14, 964 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    S. Karamipour, M. Sadjadi, N. Farhadyar, Spectrochim. Acta Part A: Mol Biomol. Spectrosc. J. 148, 146–155 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    A. Sankaran, K. Kumaraguru, B. Balraj, J. Inorg. Organomet. Polym. (2020).

    Article  Google Scholar 

  36. 36.

    H. Salehizadeh, E. Hekmatian, M. Sadeghi, K. Kennedy, Nanobiotechnol. J. 10, 3 (2012)

    CAS  Article  Google Scholar 

  37. 37.

    S.R. Bhattarai, R. Bahadur, S. Aryal, M.S. Khil, H.Y. Kim, Carbohydr. Polym. J. 69, 467–477 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    B. Chertok, B. Moffat, A. David, F. Yu, C. Bergemann, B. Ross et al., Biomaterials 29, 487–496 (2008).

    CAS  Article  Google Scholar 

  39. 39.

    M.J. Al-Awady, A.A. Balakit, S. Al-Musawi, M.J. Alsultani, A. Kamil, M. Alabbasi, Nano Biomed. Eng. 11, 157–169 (2019).

    CAS  Article  Google Scholar 

  40. 40.

    L. Ma’mani, S. Nikzad, H.K. Manjili, S. Al-Musawi, M. Saeedi, S. Askarlou, A. Foroumadi, A. Shafiee, Eur. J. Med. Chem. 18, 646–654 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    S. Al-Musawi, A.J. Hadi, S.J. Hadi, N.K.K. Hindi, Global Pharma Tech. J. 11, 628–637 (2019)

    Google Scholar 

  42. 42.

    H.K. Manjili, H.N. Manesh, M. Mashhadikhan, L. Ma’mani, S. Nikzad, S. Al-mussawi, Paramed Sci. J. 5, 2008–4978 (2014).

    Article  Google Scholar 

Download references


The authors gratefully acknowledge the financial and technical support provided by the Applied Science Department, Laser Branch, University of Technology (Baghdad/Iraq), and Genetic Engineering Department, Al-Qasim Green University (Babylon/Iraq).

Author information



Corresponding author

Correspondence to Adawiya J. Haider.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Kinani, M.A., Haider, A.J. & Al-Musawi, S. Design, Construction and Characterization of Intelligence Polymer Coated Core–Shell Nanocarrier for Curcumin Drug Encapsulation and Delivery in Lung Cancer Therapy Purposes. J Inorg Organomet Polym 31, 70–79 (2021).

Download citation


  • Fe@au core–shell
  • Drug delivery
  • Anti-cancer drugs
  • Nanosystem
  • Chitosan
  • Curcumin
  • Lung caser (A549)