Facile and Cost-Effective CTAB Templated Hydrothermal Synthesis and Characterization of MgCo2O4 Electrode Material for Supercapacitor Application

Abstract

MgCo2O4 is newly become a significant electrode material for high performance supercapacitor application since it possesses a high theoretical capacitance. In this work, the MgCo2O4 materials have been prepared using cost-effective CTAB assisted hydrothermal synthetic method followed by suitable calcination process. Crystalline behavior, bonding properties and surface morphologies of the prepared materials were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopic analysis and scanning electron microscopic techniques. During this endeavour, the nanorods structure was obtained with the appropriate concentration of CTAB template. The electrochemical properties of freshly prepared MgCo2O4 materials have been analyzed using cyclic voltammetry (CV), electrochemical impedance spectroscopy and chronopotentiometry techniques. The cyclic voltammetric measurement was offer the specific capacitance of 784 Fg−1 at a scan rate of 5 mVs−1 with good rate capability. In addition, chronopotentiometric curves exhibit the specific capacitance of 711 Fg−1 at a current density of 1 Ag−1. Furthermore, the cyclic stability analysis displayed attractive stability such as 94% of initial capacitance retained after 2000 consecutive CV cycles at a high scan rate of 100 mVs−1. These findings demonstrate that the convenient utilization of MgCo2O4 as a supercapacitor electrode application.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    S. Chu, A. Majumdar, Nature 488, 294 (2012)

    CAS  PubMed  Google Scholar 

  2. 2.

    B. Dunn, H. Kamath, J.M. Tarascon, Science 334, 928 (2011)

    CAS  PubMed  Google Scholar 

  3. 3.

    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)

    CAS  PubMed  Google Scholar 

  4. 4.

    Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, H. Peng, Chem. Rev. 115, 5159 (2015)

    CAS  PubMed  Google Scholar 

  5. 5.

    L. Yu, G. Zhang, C. Yuan, X.W. Lou, Chem. Commun. 49, 137 (2013)

    CAS  Google Scholar 

  6. 6.

    S. Liu, S. Sun, X.Z. You, Nanoscale 6, 2037 (2014)

    CAS  PubMed  Google Scholar 

  7. 7.

    J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, 23, 2076 (2011)

  8. 8.

    L. Yuan, X. Xiao, T. Ding, J. Zhong, X. Zhang, Y. Shen, B. Hu, Y. Huang, J. Zhou, Z.L. Wang, Angew. Chemie Int. Ed. 51, 4934 (2012)

    CAS  Google Scholar 

  9. 9.

    R. Article, 3088 (2013)

  10. 10.

    J. Zhang, G. Zhang, W. Luo, Y. Sun, C. Jin, W. Zheng, 5, 105 (2016)

  11. 11.

    P.Simon, Y. Gagotsi, 368, 3457 (2010)

  12. 12.

     G. Wang, l. Zhang, J. Zhang, 41, 797 (2012)

  13. 13.

    S. K. Balasingam, S. Lee, Y. Jun, 44, 15491 (2015)

  14. 14.

    V. Subramanian, S.C. Hall, P.H. Smith, B. Rambabu, Solid State Ion. 175, 511 (2004)

    CAS  Google Scholar 

  15. 15.

    M. Zhang, Q. Li, D. Fang, I.A. Ayhan, Y. Zhou, L. Dong, C. Xiong, Q. Wang, RSC Adv. 5, 96205 (2015)

    CAS  Google Scholar 

  16. 16.

    J. Zhang, G. Zhang, W. Luo, Y. Sun, C. Jin, W. Zheng, A.C.S. Sustain, Chem. Eng. 5, 105 (2017)

    CAS  Google Scholar 

  17. 17.

    J. Zhao, X. Zhang, M. Li, S. Lu, P. Yang, CrystEngComm 18, 8020 (2016)

    CAS  Google Scholar 

  18. 18.

    D. Gueon, J.H. Moon, A.C.S. Sustain, Chem. Eng. 5, 2445 (2017)

    CAS  Google Scholar 

  19. 19.

    N.G. Prakash, M. Dhananjaya, A.L. Narayana, D.P. Shaik, P. Rosaiah, O.M. Hussain, High Performance One Dimensional α-MoO3 Nanorods for Supercapacitor Applications (Elsevier Ltd and Techna Group S.r.l, Dorchester, 2018)

    Google Scholar 

  20. 20.

    S.N. Pusawale, P.R. Deshmukh, C.D. Lokhande, Appl. Surf. Sci. 257, 9498 (2011)

    CAS  Google Scholar 

  21. 21.

    P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C.P. Wong, Z.L. Wang, ACS Nano 7, 2617 (2013)

    CAS  PubMed  Google Scholar 

  22. 22.

    Q. Qu, Y. Zhu, X. Gao, Y. Wu, Adv. Energy Mater. 2, 950 (2012)

    CAS  Google Scholar 

  23. 23.

    M. Peña Alvarez, P. Mayorga Burrezo, T. Iwamoto, L. Qiu, M. Kertesz, M. Taravillo, V.G. Baonza, J.T. López Navarrete, S. Yamago, J. Casado, M.P. Alvarez, P.M. Burrezo, T. Iwamoto, L. Qiu, M. Kertesz, M. Taravillo, V.G. Baonza, J.T.L. Navarreteb, S. Yamago, J. Casado, Faraday Discuss. 4, 1166 (2014)

    Google Scholar 

  24. 24.

    Q. Zhou, J. Xing, Y. Gao, X. Lv, Y. He, Z. Guo, Y. Li, ACS Appl. Mater. Interfaces 6, 11394 (2014)

    CAS  PubMed  Google Scholar 

  25. 25.

    J. Du, G. Zhou, H. Zhang, C. Cheng, J. Ma, W. Wei, L. Chen, T. Wang, ACS Appl. Mater. Interfaces 5, 7405 (2013)

    CAS  PubMed  Google Scholar 

  26. 26.

    Y. Dong, Y. Wang, Y. Xu, C. Chen, Y. Wang, L. Jiao, H. Yuan, Electrochim. Acta 225, 39 (2017)

    CAS  Google Scholar 

  27. 27.

    L. Bin Kong, C. Lu, M.C. Liu, Y.C. Luo, L. Kang, X. Li, F.C. Walsh, Electrochim. Acta 115, 22 (2014)

    Google Scholar 

  28. 28.

    B. Liu, B. Liu, Q. Wang, X. Wang, Q. Xiang, D. Chen, G. Shen, ACS Appl. Mater. Interfaces 5, 10011 (2013)

    CAS  PubMed  Google Scholar 

  29. 29.

    J. Bao, Z. Wang, W. Liu, L. Xu, F. Lei, J. Xie, Y. Zhao, Y. Huang, M. Guan, H. Li, J. Alloys Compd. 764, 565 (2018)

    CAS  Google Scholar 

  30. 30.

    A. Pendashteh, S.E. Moosavifard, M.S. Rahmanifar, Y. Wang, M.F. El-Kady, R.B. Kaner, M.F. Mousavi, Chem. Mater. 27, 3919 (2015)

    CAS  Google Scholar 

  31. 31.

    L. Abbasi, M. Arvand, Appl. Surf. Sci. 445, 272 (2018)

    CAS  Google Scholar 

  32. 32.

    M. Kim, J. Kim, Electrochim. Acta 260, 921 (2018)

    CAS  Google Scholar 

  33. 33.

    L. Cui, L. Huang, M. Ji, Y. Wang, H. Shi, Y. Zuo, S. Kang, J. Power Sources 333, 118 (2016)

    CAS  Google Scholar 

  34. 34.

    X. Wu, L. Meng, Q. Wang, W. Zhang, Y. Wang, Mater. Lett. 206, 71 (2017)

    CAS  Google Scholar 

  35. 35.

    Y. Wang, X. Ma, S. Li, J. Sun, Y. Zhang, H. Chen, C. Xu, J. Alloys Compd. 818, 152905 (2020)

    CAS  Google Scholar 

  36. 36.

    J. Xu, L. Wang, Y. Sun, J. Zhang, C. Zhang, M. Zhang, J. Alloys Compd. 779, 100 (2019)

    CAS  Google Scholar 

  37. 37.

    J. Xu, L. Wang, J. Zhang, J. Qian, J. Liu, Z. Zhang, H. Zhang, X. Liu, J. Alloys Compd. 688, 933 (2016)

    CAS  Google Scholar 

  38. 38.

    S.G. Krishnan, M.V. Reddy, M. Harilal, B. Vidyadharan, I.I. Misnon, M.H.A. Rahim, J. Ismail, R. Jose, Electrochim. Acta 161, 312 (2015)

    CAS  Google Scholar 

  39. 39.

    Y. Anil Kumar, S. Singh, P.J.S. Rana, K.D. Kumar, H.J. Kim, New J. Chem. 44, 4266 (2020)

    CAS  Google Scholar 

  40. 40.

    H.S. Jadhav, A. Roy, G.M. Thorat, J.G. Seo, Inorg. Chem. Front. 5, 1115 (2018)

    CAS  Google Scholar 

  41. 41.

    G. Li, X. Liu, W. Bai, Mater. Res. Express 5, 3 (2018)

    Google Scholar 

  42. 42.

    R. Kumar, P. Rai, A. Sharma, J. Mater. Chem. A 4, 9822 (2016)

    CAS  Google Scholar 

  43. 43.

    F. Chen, X. Liu, Z. Zhang, N. Zhang, A. Pan, S. Liang, R. Ma, Dalton Trans. 45, 15155 (2016)

    CAS  PubMed  Google Scholar 

  44. 44.

    J. Yesuraj, V. Elumalai, M. Bhagavathiachari, A.S. Samuel, E. Elaiyappillai, P.M. Johnson, J. Electroanal. Chem. 797, 78 (2017)

    Google Scholar 

  45. 45.

    Y. Zheng, Y. Yang, S. Chen, Q. Yuan, CrystEngComm 18, 4218 (2016)

    CAS  Google Scholar 

  46. 46.

    B. Saravanakumar, S. Muthulakshmi, G. Ravi, V. Ganesh, A. Sakunthala, R. Yuvakkumar, Appl. Phys. A Mater. Sci. Process. 123, 697 (2017)

    Google Scholar 

  47. 47.

    P.S. Das, S. Bakuli, I. Biswas, A.K. Mallik, A. Dey, S. Mukherjee, J. Ghosh, A.K. Mukhopadhyay, Ceram. Int. 44, 424 (2018)

    CAS  Google Scholar 

  48. 48.

    Z. Tian, S. Duan, Y. Shen, M. Xie, X. Guo, Appl. Surf. Sci. 407, 463 (2017)

    CAS  Google Scholar 

  49. 49.

    Z.Y. Li, P.T.M. Bui, D.H. Kwak, M.S. Akhtar, O.B. Yang, Ceram. Int. 42, 1879 (2016)

    CAS  Google Scholar 

  50. 50.

    T.N.J.I. Edison, R. Atchudan, M.G. Sethuraman, Y.R. Lee, J. Taiwan Inst. Chem. Eng. 68, 489 (2016)

    CAS  Google Scholar 

  51. 51.

    U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, J. Power Sources 188, 338 (2009)

    CAS  Google Scholar 

  52. 52.

    D.S. Sun, Y.H. Li, Z.Y. Wang, X.P. Cheng, S. Jaffer, Y.F. Zhang, J. Mater. Chem. A 4, 5198 (2016)

    CAS  Google Scholar 

  53. 53.

    X.W. Wang, D.L. Zheng, P.Z. Yang, X.E. Wang, Q.Q. Zhu, P.F. Ma, L.Y. Sun, Chem. Phys. Lett. 667, 260 (2017)

    CAS  Google Scholar 

  54. 54.

    H. Wang, Y. Yang, X. Zhou, R. Li, Z. Li, New J. Chem. 41, 1110 (2017)

    CAS  Google Scholar 

  55. 55.

    H. Wei, J. Wang, S. Yang, Y. Zhang, T. Li, S. Zhao, Phys. E Low Dimens. Syst. Nanostruct. 83, 41 (2016)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Antony Sandosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sandosh, T.A., Simi, A. Facile and Cost-Effective CTAB Templated Hydrothermal Synthesis and Characterization of MgCo2O4 Electrode Material for Supercapacitor Application. J Inorg Organomet Polym 31, 251–260 (2021). https://doi.org/10.1007/s10904-020-01671-x

Download citation

Keywords

  • MgCo2O4
  • Hydrothermal
  • CTAB
  • Supercapacitors
  • Energy storage