Synthesis, Spectral Characterization and Pharmacological Evaluation of Ni(II) Complexes of 6-Nitro-benzothiazole Incorporated Azo Dyes

Abstract

The present work describes the synthesis of bioactive Ni(II) complexes derived from 6-nitro-1,3-benzothiazole incorporated azo dyes. The newly synthesized azo dyes and their Ni(II) complexes are characterized by various physical and spectroscopic techniques. The IR spectral data of metal complexes revealed that the bonding sites are the nitrogen atom of the azo group and oxygen atom phenolic group of the pyridone moiety of the ligands. All the azo dyes behave as bidentate ligands with metal–ligand ratio 1:2 of the type [Ni(L)2(H2O)2], where L stands for deprotonated azo dye ligand. The TG–DTA studies showed good thermal stability and confirmed the presence of coordinated water molecules in all the metal complexes. To investigate the growth inhibitory efficiency of the metal complexes after chelation with the ligands, the synthesized compounds were examined for their antimicrobial activity by the tube dilution assay. All the synthesized compounds have shown significant activity against tested pathogenic strains. The azo dyes and their Ni(II) complexes were studied for their antimycobacterial and anti-inflammatory activity and all the complexes exhibited increased activity after chelation. The DNA cleavage efficiency of the synthesized compounds was tested against pBR322, and only the azo dye L3 and its Ni(II) complex able to cleave all forms of DNA while the rest of the compounds showed partial cleavage against pBR322.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. Badea, R. Olar, E. Cristurean, D. Marinescu, A. Emandi, P. Budrugeac et al., J. Therm. Anal. Calorim. 77(3), 815–824 (2004)

    CAS  Google Scholar 

  2. 2.

    H.B. Hassib, S.A. Abdel-latif, Spectrochim. Acta A. 59, 2425–2434 (2003)

    CAS  Google Scholar 

  3. 3.

    A. Ni, K. Chen, H. Tian, Dyes Pigm. 50(1), 13–19 (2001)

    CAS  Google Scholar 

  4. 4.

    S. Tauro, E. Coutinho, J. Mol. Struct. 532(1–3), 23–29 (2000)

    CAS  Google Scholar 

  5. 5.

    S.S. Kandil, Trans. Met. Chem. 23(4), 461–465 (1998)

    CAS  Google Scholar 

  6. 6.

    W. Bin, W. Yi-Qun, G. Dong-Hong, G. Fu-Xi, Chin. Phys. Lett. 20(9), 1596–1599 (2003)

    Google Scholar 

  7. 7.

    H. Fu-Xin, W. Yi-Qun, G. Dong-Hong, G. Fu-Xi, Chin. Phys. Lett. 20(12), 2259–2261 (2003)

    Google Scholar 

  8. 8.

    E. Hamada, T. Fujii, Y. Tomizawa, S. Iimura, Jpn. J. Appl. Phys. 36, 593–594 (1997)

    CAS  Google Scholar 

  9. 9.

    L. Kelland, Nat. Rev. Cancer. 7(8), 573–584 (2007)

    CAS  PubMed  Google Scholar 

  10. 10.

    Z.H. Siddik, Oncogene 22(47), 7265–7279 (2003)

    CAS  PubMed  Google Scholar 

  11. 11.

    S. Rafique, M. Idrees, A. Nasim, H. Akbar, A. Athar, Biotechnol. Mol. Biol. Rev. 5(2), 38–45 (2010)

    CAS  Google Scholar 

  12. 12.

    Y.K. Yan, M. Melchart, A. Habtemariam, P.J. Sadler, Chem. Commun. 38, 4764–4776 (2005)

    Google Scholar 

  13. 13.

    M.A. Metwally, Y.A. Suleiman, M.A. Gouda, A.N. Harmal, A.M. Khalil, Int. J. Mod. Org. Chem. 1(3), 213–225 (2012)

    CAS  Google Scholar 

  14. 14.

    A.Z. El-Sonbati, W.H. Mahmoud, G. Gehad Mohamed, M.A. Diab, S.M. Morgan, S.Y. Abbas, Appl. Organomet. Chem. (2019). https://doi.org/10.1002/aoc.5048

    Article  Google Scholar 

  15. 15.

    A.Z. El-Sonbati, M.A. Diab, ShM Morgan, A.M. Eldesoky, M.Z. Balboula, Appl. Organomet. Chem. (2018). https://doi.org/10.1002/aoc.4207

    Article  Google Scholar 

  16. 16.

    ShM Morgan, A.Z. El-Sonbati, M.A. El-Mogazy, Appl. Organomet. Chem. (2018). https://doi.org/10.1002/aoc.4264

    Article  Google Scholar 

  17. 17.

    ShM Morgan, M.A. Diab, A.Z. El-Sonbati, Appl. Organomet. Chem. (2018). https://doi.org/10.1002/aoc.4281

    Article  Google Scholar 

  18. 18.

    M.A. Diab, A.Z. El-Sonbati, A.F. Shoair, A.M. Eldesoky, N.M. El-Far, J. Mol. Struct. (2017). https://doi.org/10.1016/j.molstruc.2017.04.018

    Article  Google Scholar 

  19. 19.

    J. Prikryl, M. Cerny, H. Belohlavova, V. Machacek, A. Lycka, Dyes Pigm. 72(3), 392–402 (2007)

    CAS  Google Scholar 

  20. 20.

    S. Kini, S. Swain, A. Gandhi, Indian J. Pharm. Sci. 69(1), 46–50 (2007)

    CAS  Google Scholar 

  21. 21.

    E. Jayachandra, L.V.G. Nargund, Oriental J. Chem. 19(1), 139–142 (2003)

    Google Scholar 

  22. 22.

    T.L. Fu, I.J. Wang, Dyes Pigm. 76(1), 158–164 (2008)

    Google Scholar 

  23. 23.

    K. Hunger, P. Gregory, P. Miederer, H. Berneth, C. Heid, W. Mennicke, Important Chemical Chromophores of Dye Classes. Industrial Dyes: Chemistry, Properties, Applications (Academic Press, San Diego, 2002)

    Google Scholar 

  24. 24.

    R.J.H. Clark, R.E. Hester, Advances in Materials Science Spectroscopy (Wiley, New York, 1991)

    Google Scholar 

  25. 25.

    A.D. Khalaji, J. Clust. Sci. 24, 209–215 (2013)

    CAS  Google Scholar 

  26. 26.

    Y. Hanifehpour, A. Morsali, B. Mirtamizdoust, S.W. Joo, B. Soltani, Ultrason. Sonochem. (2017). https://doi.org/10.1016/j.ultsonch.2017.02.003

    Article  PubMed  Google Scholar 

  27. 27.

    R. Takjoo, R. Centore, M. Hakimi, S.A. Beyramabadi, A. Morsali, Inorganica Chim. Acta. 371, 36–41 (2011)

    CAS  Google Scholar 

  28. 28.

    Y. Hanifehpour, B. Mirtamizdoust, R. Wang, S. Anbarteh, S.W. Joo, J. Inorg. Organomet. Polym. (2017). https://doi.org/10.1007/s10904-017-0554-4

    Article  Google Scholar 

  29. 29.

    Y. Hanifehpour, A. Morsali, B. Soltani, B. Mirtamizdoust, S.W. Joo, Ultrason. Sonochem. 15, 15 (2016). https://doi.org/10.1016/j.ultsonch.2016.06.032

    CAS  Article  Google Scholar 

  30. 30.

    O. Andac, Y. Topcu, T.V. Yilmaz, T.A. William Harrison, J. Chem. Crystallogr. 30, 12 (2000)

    Google Scholar 

  31. 31.

    B. Mirtamizdoust, Y. Hanifehpour, E. Behzadfar, M. Sadeghi-Roodsari, J.H. Jung, S.W. Joo, J. Mol. Struct. 1201, 127191 (2020)

    CAS  Google Scholar 

  32. 32.

    F.H. Nielsen. In: W.G. Hoekstra, J.W. Suttie, H.E. Ganther, W. Mertz (Eds.) Essentiality and Function of Nickel-Trace Element Metabolism in Animals-2 (University Park Press, Baltimore, 1974).

    Google Scholar 

  33. 33.

    R.P. Hausinger, Sci. Total Environ. 148(2–3), 157–166 (1994)

    CAS  PubMed  Google Scholar 

  34. 34.

    M.I. Islam Moustafa, H. Magda Abdellattif, Mod. Chem. Appl. 5, 1–7 (2017)

    Google Scholar 

  35. 35.

    S. Bal, J.D. Connolly, ARAB J. Chem. 10, 761–768 (2017)

    CAS  Google Scholar 

  36. 36.

    T. Eren, M. Kose, K. Sayin, V. McKee, M. Kurtoglu, J. Mol. Struct. 1065, 191–198 (2014)

    Google Scholar 

  37. 37.

    A.Z. El-Sonbati, M.A. Diab, Sh.M. Morgan, https://doi.org/10.1016/j.molliq.2016.11.047.

  38. 38.

    V. Kumar, J. Keshavayya, M. Pandurangappa, B.N. Ravi, CDC. 17-18, 13–29 (2018)

    Google Scholar 

  39. 39.

    A.I. Vogel, A Text Book Quantitative Organic Analysis (Wiley, New York, 1962)

    Google Scholar 

  40. 40.

    N.M. Mallikarjuna, J. Keshavayya, M.R. Maliyappa, R.A. ShoukatAli, T. Venkatesh, J. Mol. Struct. 1165, 28–36 (2018)

    CAS  Google Scholar 

  41. 41.

    M. Schwalve, A.C. Goodwin, Antimicrobial Susceptibility Testing Protocols (CRC Press, Boca Raton, 2007)

    Google Scholar 

  42. 42.

    N.M. Mallikarjuna, J. Keshavayya, JKSUS. 12, 12 (2018). https://doi.org/10.1016/j.jksus.2018.04.033

    Article  Google Scholar 

  43. 43.

    Z. Ren, J. Chen, R.A. Khalil, Methods Mol. Biol. 1626, 79–102 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    N.M. Mallikarjuna, J. Keshavayya, B.N. Ravi, J. Mol. Struct. 1173, 557–566 (2018)

    CAS  Google Scholar 

  45. 45.

    K. Krishnankutty, P. Sayudevi, M.B. Ummathur, J. Indian Chem. Soc. 84(4), 337–340 (2007)

    CAS  Google Scholar 

  46. 46.

    M.S. Sujamol, C.J. Athira, Y. Sindhu, K. Mohanan, Spectrochim. Acta. 75, 106–112 (2010)

    CAS  Google Scholar 

  47. 47.

    R.L. Carlin, Transition Metal Chemistry, 2nd edn. (Marcel Decker, New York, 1969)

    Google Scholar 

  48. 48.

    M.A. Ali, S.M.M.H. Majumder, R.J. Butcher, J.P. Jasinski, J.M. Jasinski, Polyhedron 16(16), 2749–2754 (1997)

    CAS  Google Scholar 

  49. 49.

    D.N. Sathyanarayana, Electronic Absorption Spectroscopy and Related Techniques (Universities Press India limited, New Delhi, 2001)

    Google Scholar 

  50. 50.

    K. Shivakumar, P. Vithalreddy, M.B. Halli, J. Co-ordination Chem. 61, 2274–2287 (2008)

    CAS  Google Scholar 

  51. 51.

    K. Mahendra Raj, B. Vivekanand, G.Y. Nagesh, B.H.M. Mruthyunjayaswamy, J. Mol. Struct. 1059, 280–293 (2014)

    CAS  Google Scholar 

  52. 52.

    L.X. Zhang, Y. Liu, L.H. Cia, Y.J. Hu, J. Yin, P.Z. Hu, Thermochim. Acta. 440(1), 51–56 (2006)

    CAS  Google Scholar 

  53. 53.

    Z. Bedewi, Y. Mekonnen, A. Worku, G. Medhin, A. Zewde, G. Yimer, R. Pieper, G. Amen, New Microbes New Infect. 17, 69–74 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    A. Kamal, Y.V.V. Srikanth, M.N.A. Khan, T.B. Shaik, M. Ashraf, Bioorg. Med. Chem. Lett. 20(17), 5229–5231 (2010)

    CAS  PubMed  Google Scholar 

  55. 55.

    A. Moriarity, J.O. Sullivan, J. Kennedy et al., Ther. Adv. Med. Oncol. 8, 276–293 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Z.H. Chohan, M. Arif, M.A. Akhtar, C.T. Supuran, Bioinorgan. Chem. Appl. 13, 1–14 (2006)

    Google Scholar 

  57. 57.

    Z.H.A. Wahab, M.M. Mashaly, A.A. Salman, B.A. El-Shetary, A.A. Faheim, Spectrochim. Acta. 60, 2861–2873 (2004)

    Google Scholar 

  58. 58.

    L. Ferrero-Miliani, O.H. Nielsen, P.S. Andersen, S.E. Girardin, Nielsen. Andersen; Girardin. Clin. Exp. Immunol. 147(2), 227–235 (2007)

    CAS  PubMed  Google Scholar 

  59. 59.

    C. Tolia, N. AthanassiosPapadopoulos, P. CatherineRaptopoulou, V. Psycharis, C. Garino, L. Salassa, G. Psomas, J. Inorg. Biochem. 123, 53–65 (2013)

    CAS  PubMed  Google Scholar 

  60. 60.

    M.J. Waring, in Drug Action at the Molecular Level, ed. by G.C.K. Roberts (Macmillan, London, 1977)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Chemistry, Kuvempu University, Shankaraghatta. We are also grateful to SAIF, CIL-Panjab University, DST-PURSE lab, Mangalore University, Maratha Mandal’s Central research Lab for providing spectral and biological data. One of the author Mr. Ravi B N thankful to UGC, New Delhi, India for providing the UGC-BSR Fellowship to carry out the research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Keshavayya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 31 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ravi, B.N., Keshavayya, J. & Mallikarjuna, N.M. Synthesis, Spectral Characterization and Pharmacological Evaluation of Ni(II) Complexes of 6-Nitro-benzothiazole Incorporated Azo Dyes. J Inorg Organomet Polym (2020). https://doi.org/10.1007/s10904-020-01632-4

Download citation

Keywords

  • Coordination compounds
  • Azo dyes
  • Antimicrobial activity
  • TG–DTA